
- •Эконометрика и экономико-математические методы и модели Учебно-методический комплекс
- •Состав и структура умк
- •Эконометрика
- •И экономико-математические
- •Методы и модели
- •Учебная программа для специальностей:
- •Составила: Мокеева о.А., к. Ф.-м. Н., доцент
- •Учебная программа составлена на основе учебной программы «Эконометрика и экономико-математические методы и модели», утвержденной 31 августа 2010 г., регистрационный номер уд-046-10/баз.
- •Заведующий кафедрой
- •Пояснительная записка
- •Примерный тематический план
- •Содержание учебного материала
- •Тема 1. Теоретические основы математического моделирования
- •Тема 2. Модели парной регрессии
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
- •Тема 1 теоретические основы экономико-математического моделирования
- •1. Понятие о модели и моделировании
- •2. Классификация моделей
- •3. Экономико-математическая модель
- •4. Этапы экономико-математического моделирования
- •5. Принципы построения экономико-математических моделей
- •6. Общая характеристика экономико-математических методов
- •7. Эконометрика как наука
- •8. Эконометрика и другие науки
- •9. Эконометрические модели и их типы
- •10. Этапы эконометрического моделирования
- •11. Пример эконометрического исследования
- •12. Эконометрическое моделирование
- •Вопросы для самоконтроля
- •Тема 2 модели парной регрессии
- •1. Корреляционный и регрессионный анализы
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Оценка тесноты связи между количественными переменными
- •5. Проверка общего качества уравнения регрессии
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Парная линейная регрессия и корреляция»
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •5. Прогнозирование
- •Сурс спецификация и параметризация парной нелинейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Практические задания (вариант определяет преподаватель)
- •Методические указания
- •Литература
- •Вопросы для самоконтроля
- •Тема 3 модели множественной регрессии
- •1. Постановочный этап
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Статистическая значимость параметров регрессии
- •4.2. Проверка общего качества модели множественной регрессии
- •4.3. Предпосылки мнк
- •5. Прогнозирование на основе регрессионных моделей
- •6. Фиктивные переменные
- •7. Введение фиктивных переменных в модель
- •8. Тест Чоу
- •9. Фиктивные переменные и сезонность
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Множественная линейная регрессия и корреляция»
- •Порядок выполнения работы
- •Вопросы для самоконтроля
- •Тема 4 эконометрический анализ при нарушении классических модельных предположений
- •1. Проблема гетероскедастичности
- •2. Автокорреляция остатков регрессионной модели
- •3. Мультиколлинеарность факторов
- •Эконометрический анализ модельных предположений для множественной линейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Отчет по лабораторной и самостоятельной управляемой работе «Множественная регрессия и корреляция» студента _____________________________________ гр. ______
- •1. Постановочный этап.
- •4. Верификация модели.
- •Литература
- •Вопросы для самоконтроля
- •Тема 5 моделирование одномерных временных рядов
- •1. Динамические эконометрические модели
- •2. Компоненты временного ряда
- •3. Выравнивание временного ряда
- •4. Общая схема моделирования временного ряда
- •5. Автокорреляция остатков временного ряда
- •6. Анализ структурной стабильности тенденции
- •Примеры решения заданий
- •1.2Подобрать линию тренда, которая лучше всего описывает фактические данные и на ее основе сделать прогноз на 3 недели вперед. Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Анализ структуры временного ряда»
- •Порядок выполнения работы
- •2. Спецификация, параметризация и верификация модели.
- •3. Прогнозирование
- •Вопросы для самоконтроля
- •Тема 6 системы одновременных уравнений
- •1. Системы уравнений, используемые в эконометрике
- •2. Структурная и приведенная формы моделей
- •3. Проблема идентифицируемости модели
- •4. Методы оценивания параметров структурной модели
- •5. Практика применения систем одновременных уравнений в макроэкономическом анализе
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 7 модели сетевого планирования
- •1.2.11. Области применения моделей сетевого планирования
- •2. Основные понятия и элементы сетевого графика
- •3. Правила построения сетевого графика
- •4. Временные параметры сетевого графика
- •5. Линейный график Ганта
- •6. Задачи оптимизации сетевого графика
- •7. Модели сетевого планирования в условиях неопределенности
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 8 модели межотраслевого баланса
- •1. Понятие балансовой модели
- •2. Схема межотраслевого баланса
- •3. Варианты расчетов по балансовой модели
- •4. Модель отраслевого баланса в условиях ограничений на используемые внешние ресурсы
- •5. Из истории метода межотраслевого баланса
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 9 модели теории игр
- •1. Понятие игры, виды игр
- •2. Принцип минимакса
- •3. Упрощение матричных игр
- •1.2.24. Решение матричных игр без седловых точек
- •1.35. Игры с природой
- •1.46. Критерий Байеса
- •1.57. Критерий Лапласа
- •1.68. Максиминный критерий Вальда
- •1.79. Критерий Сэвиджа (минимаксного риска)
- •1.810. Критерий обобщенного максимума Гурвица
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •1.10Критерий Вальда
- •1.11Критерий Сэвиджа
- •1.12Критерий Гурвица
- •1.13Критерий Байеса
- •1.15Критерий Лапласа
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 10 модели массового обслуживания
- •1. Основные понятия систем массового обслуживания
- •2. Классификации систем массового обслуживания
- •3. Простейшие системы массового обслуживания
- •4. Примеры
- •5. Основные показатели эффективности системы массового обслуживания
- •5.1. Одноканальная система массового обслуживания с отказами
- •5.2. Многоканальная система массового обслуживания с отказами
- •5.3. Одноканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.4. Многоканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.5. Одноканальная система массового обслуживания с ожиданием и неограниченной очередью
- •3.3.6. Многоканальная система массового обслуживания с ожиданием и неограниченной очередью
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 11 модели управления товарными запасами
- •1. Основные теоретические сведения
- •2. Понятие о системах управления запасами
- •3. Простейшая модель оптимального размера партии поставки
- •4. Модель с учетом неудовлетворенных требований
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
Примеры решения заданий
Пример 1. Телефонная АТС имеет одну линию, на которую в сред- нем приходит 0,8 вызова в мин. Среднее время разговора 1,5 мин. Вызов, пришедший во время разговора, не обслуживается. Считая потоки вызовов пуассоновскими, найти абсолютную и относительную пропускную способности станции, вероятность отказа в обслуживании, а также среднее время пребывания заявки в системе.
Решение:
Телефонную станцию рассматриваем как одноканальную СМО с отказами. За единицу времени примем 1 мин.
Параметры системы следующие:
мин;
= 0,8 вызовов/мин;
вызовов/мин.
Рассчитаем относительную пропускную способность следующим образом:
т. е. в среднем обслуживается 45 % поступающих в систему заявок.
Абсолютная пропускная способность (интенсивность выходного потока заявок) равна:
A = Q = 0,8 0,455 = 0,364 вызовов/мин.
Как видим, А < , поскольку при расчете А учитываются еще и те заявки, которым было отказано в обслуживании.
Вероятность отказа в обслуживании рассчитывается следующим образом:
,
т. е. в среднем 54,4 % поступивших в систему заявок получают отказ в обслуживании.
Среднее время пребывания заявки в системе вычисляется следующим образом:
мин.
Пример 2. В отделении банка на обслуживании клиентов работают 3 оператора. Среднее время обслуживания одного клиента оператором – 12 мин. В среднем за час в банк обращаются 15 клиентов. Если все операторы заняты, клиенты не обслуживаются банком. Найти основные характеристики работы банка, а также вероятность того, что не менее двух каналов простаивают.
Решение:
Банк можно рассматривать как многоканальную СМО с отказами. За единицу времени примем 1 час.
Параметры системы равны:
n = 3;
Тобс = 12 мин = 0,2 ч;
= 15 клиентов /ч;
клиентов/ч.
Рассчитаем параметр по следующей формуле:
Вероятность того, что система свободна, определяется по формуле
Вероятность отказа в обслуживании равна
Относительная пропускная способность равна
Q = 1 – Pотк=1 – 0,346 = 0,654.
Это означает, что из каждых 100 клиентов, обратившихся в банк, в среднем будут обслужены 65 клиентов. При этом абсолютная пропускная способность СМО составит следующую величину:
A = Q = 15 0,654 = 9,81 клиентов/ч,
таким образом, банк обслуживает не 15 клиентов/ч, а меньше, что вызвано случайностью потока заявок.
Среднее число каналов, занятых обслуживанием заявок, вычисляется следующим образом:
Так как число каналов равно 3, а занято 2 канала, то это означает, что простаивает 1 канал.
Пример 3. В пункте обмена валюты работают два оператора, каждый их которых обслуживает клиента в среднем за 2,5 мин. По условиям безопасности в помещении пункта может находиться одновременно не более 5 человек, включая обслуживаемых клиентов. Если помещение заполнено, то очередной клиент не становится в очередь, а уходит. В среднем клиенты приходят каждые 2 мин. Найти основные характеристики работы обменного пункта.
Решение:
Математической моделью данного обменного пункта является двух- канальная СМО (n = 2) с ожиданием и ограничением на длину очереди (m = 3). За единицу времени примем 1 мин.
Параметры системы следующие:
n = 2;
m = 3;
мин;
клиентов/мин;
клиентов
/мин.
Рассчитаем параметр следующим образом:
.
Вероятность того, что система свободна (оба канала свободны) равна
Вероятность отказа в обслуживании рассчитывается следующим образом:
Это означает, что из каждых 100 клиентов, обратившихся в пункт, в среднем будут обслужены около 95 человек.
Относительная пропускная способность рассчитывается следующим образом:
Q = 1 – Pотк = 1 – 0,047 = 0,953.
Абсолютная пропускная способность равна
A = Q = 0,5 0,953 = 0,477 клиентов/мин,
т. е. из обменного пункта в среднем выходят 0,48 клиентов/мин.
Среднее число каналов, занятых обслуживанием заявок, вычисляется по формуле
Средняя длина очереди рассчитывается следующим образом:
Среднее число заявок, находящихся в системе равно
Lсис = Lоч + K = 0,416 + 1,191 = 1,607.
Среднее время ожидания заявки в очереди равно
мин.
Среднее время пребывания заявки в системе равно
мин.
Пример 4. В кассе метрополитена, продающей карточки на проезд, работают два окна. В среднем один кассир тратит на обслуживание одного пассажира 0,5 мин. В среднем к кассе подходит 3 человека в мин. Найти основные характеристики работы кассы.