
- •Эконометрика и экономико-математические методы и модели Учебно-методический комплекс
- •Состав и структура умк
- •Эконометрика
- •И экономико-математические
- •Методы и модели
- •Учебная программа для специальностей:
- •Составила: Мокеева о.А., к. Ф.-м. Н., доцент
- •Учебная программа составлена на основе учебной программы «Эконометрика и экономико-математические методы и модели», утвержденной 31 августа 2010 г., регистрационный номер уд-046-10/баз.
- •Заведующий кафедрой
- •Пояснительная записка
- •Примерный тематический план
- •Содержание учебного материала
- •Тема 1. Теоретические основы математического моделирования
- •Тема 2. Модели парной регрессии
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
- •Тема 1 теоретические основы экономико-математического моделирования
- •1. Понятие о модели и моделировании
- •2. Классификация моделей
- •3. Экономико-математическая модель
- •4. Этапы экономико-математического моделирования
- •5. Принципы построения экономико-математических моделей
- •6. Общая характеристика экономико-математических методов
- •7. Эконометрика как наука
- •8. Эконометрика и другие науки
- •9. Эконометрические модели и их типы
- •10. Этапы эконометрического моделирования
- •11. Пример эконометрического исследования
- •12. Эконометрическое моделирование
- •Вопросы для самоконтроля
- •Тема 2 модели парной регрессии
- •1. Корреляционный и регрессионный анализы
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Оценка тесноты связи между количественными переменными
- •5. Проверка общего качества уравнения регрессии
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Парная линейная регрессия и корреляция»
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •5. Прогнозирование
- •Сурс спецификация и параметризация парной нелинейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Практические задания (вариант определяет преподаватель)
- •Методические указания
- •Литература
- •Вопросы для самоконтроля
- •Тема 3 модели множественной регрессии
- •1. Постановочный этап
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Статистическая значимость параметров регрессии
- •4.2. Проверка общего качества модели множественной регрессии
- •4.3. Предпосылки мнк
- •5. Прогнозирование на основе регрессионных моделей
- •6. Фиктивные переменные
- •7. Введение фиктивных переменных в модель
- •8. Тест Чоу
- •9. Фиктивные переменные и сезонность
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Множественная линейная регрессия и корреляция»
- •Порядок выполнения работы
- •Вопросы для самоконтроля
- •Тема 4 эконометрический анализ при нарушении классических модельных предположений
- •1. Проблема гетероскедастичности
- •2. Автокорреляция остатков регрессионной модели
- •3. Мультиколлинеарность факторов
- •Эконометрический анализ модельных предположений для множественной линейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Отчет по лабораторной и самостоятельной управляемой работе «Множественная регрессия и корреляция» студента _____________________________________ гр. ______
- •1. Постановочный этап.
- •4. Верификация модели.
- •Литература
- •Вопросы для самоконтроля
- •Тема 5 моделирование одномерных временных рядов
- •1. Динамические эконометрические модели
- •2. Компоненты временного ряда
- •3. Выравнивание временного ряда
- •4. Общая схема моделирования временного ряда
- •5. Автокорреляция остатков временного ряда
- •6. Анализ структурной стабильности тенденции
- •Примеры решения заданий
- •1.2Подобрать линию тренда, которая лучше всего описывает фактические данные и на ее основе сделать прогноз на 3 недели вперед. Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Анализ структуры временного ряда»
- •Порядок выполнения работы
- •2. Спецификация, параметризация и верификация модели.
- •3. Прогнозирование
- •Вопросы для самоконтроля
- •Тема 6 системы одновременных уравнений
- •1. Системы уравнений, используемые в эконометрике
- •2. Структурная и приведенная формы моделей
- •3. Проблема идентифицируемости модели
- •4. Методы оценивания параметров структурной модели
- •5. Практика применения систем одновременных уравнений в макроэкономическом анализе
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 7 модели сетевого планирования
- •1.2.11. Области применения моделей сетевого планирования
- •2. Основные понятия и элементы сетевого графика
- •3. Правила построения сетевого графика
- •4. Временные параметры сетевого графика
- •5. Линейный график Ганта
- •6. Задачи оптимизации сетевого графика
- •7. Модели сетевого планирования в условиях неопределенности
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 8 модели межотраслевого баланса
- •1. Понятие балансовой модели
- •2. Схема межотраслевого баланса
- •3. Варианты расчетов по балансовой модели
- •4. Модель отраслевого баланса в условиях ограничений на используемые внешние ресурсы
- •5. Из истории метода межотраслевого баланса
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 9 модели теории игр
- •1. Понятие игры, виды игр
- •2. Принцип минимакса
- •3. Упрощение матричных игр
- •1.2.24. Решение матричных игр без седловых точек
- •1.35. Игры с природой
- •1.46. Критерий Байеса
- •1.57. Критерий Лапласа
- •1.68. Максиминный критерий Вальда
- •1.79. Критерий Сэвиджа (минимаксного риска)
- •1.810. Критерий обобщенного максимума Гурвица
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •1.10Критерий Вальда
- •1.11Критерий Сэвиджа
- •1.12Критерий Гурвица
- •1.13Критерий Байеса
- •1.15Критерий Лапласа
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 10 модели массового обслуживания
- •1. Основные понятия систем массового обслуживания
- •2. Классификации систем массового обслуживания
- •3. Простейшие системы массового обслуживания
- •4. Примеры
- •5. Основные показатели эффективности системы массового обслуживания
- •5.1. Одноканальная система массового обслуживания с отказами
- •5.2. Многоканальная система массового обслуживания с отказами
- •5.3. Одноканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.4. Многоканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.5. Одноканальная система массового обслуживания с ожиданием и неограниченной очередью
- •3.3.6. Многоканальная система массового обслуживания с ожиданием и неограниченной очередью
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 11 модели управления товарными запасами
- •1. Основные теоретические сведения
- •2. Понятие о системах управления запасами
- •3. Простейшая модель оптимального размера партии поставки
- •4. Модель с учетом неудовлетворенных требований
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
1.10Критерий Вальда
Найдем
элементы
(минимальный выигрыш, соответствующий
стратегии Ai)
и запишем их в дополнительный столбец
матрицы игры. Максимальная из этих
величин равна 1 = 60,
следовательно, оптимальной является
стратегия А1,
т. е. необходимо заказать 6 путевок.
|
П1 = 6 |
П2 = 7 |
П3 = 8 |
П4 = 9 |
i |
А1 = 6 |
60 |
65 |
70 |
75 |
60 |
А2 = 7 |
54 |
70 |
75 |
80 |
54 |
А3 = 8 |
48 |
64 |
80 |
85 |
48 |
А4 = 9 |
42 |
58 |
74 |
90 |
42 |
j |
60 |
70 |
80 |
90 |
|
Рисунок 3. Платежная матрица
1.11Критерий Сэвиджа
Пересчитаем платежную матрицу (рисунок 3) в матрицу рисков. Для этого найдем максимальный элемент по каждому столбцу (j) и из него последовательно вычтем каждый элемент этого столбца. Получим матрицу рисков (рисунок 4).
-
П1 = 6
П2 = 7
П3 = 8
П4 = 9
ri
А1 = 6
0
5
10
15
15
А2 = 7
6
0
5
10
10
А3 = 8
12
6
0
5
12
А4 = 9
18
12
6
0
18
Рисунок 4. Матрица рисков
Затем найдем максимальный риск при выборе игроком А той или иной стратегии (максимальный элемент строки) и поместим его в правом добавочном столбце матрицы рисков (столбец ri):
.
Найдем минимальную из величин ri, которая равна 10. Следовательно, по критерию Сэвиджа оптимальной является стратегия А2, т. е. заказать 7 путевок.
1.12Критерий Гурвица
Добавим в платежную матрицу три дополнительных столбца:
1.
–
столбец минимальных выигрышей игрока
А при выборе им той или иной стратегии.
2.
–
столбец максимальных выигрышей игрока
А при выборе им той или иной стратегии.
3. Критерий – столбец, элементы которого рассчитываются по формуле
,
где = 0,7.
Из столбца Критерий (рисунок 5) выбираем наибольшее значение. Таким является число 6,45, соответствующее стратегии А1. Следовательно, по критерию Гурвица, оптимальной является первая стратегия игрока А (заказать 6 путевок).
|
П1 = 6 |
П2 = 7 |
П3 = 8 |
П4 = 9 |
|
|
Критерий |
А1 = 6 |
60 |
65 |
70 |
75 |
60 |
75 |
6,45 |
А2 = 7 |
54 |
70 |
75 |
80 |
54 |
80 |
6,18 |
А3 = 8 |
48 |
64 |
80 |
85 |
48 |
85 |
5,91 |
А4 = 9 |
42 |
58 |
74 |
90 |
42 |
90 |
5,64 |
Рисунок 5. Платежная матрица
Итак, в результате применения критериев Вальда, Сэвиджа и Гурвица оптимальной считается первая стратегия, так как она являлась наилучшей при применении двух критериев из трех. Согласно первой стратегии нужно заказать 6 путевок.