
- •Эконометрика и экономико-математические методы и модели Учебно-методический комплекс
- •Состав и структура умк
- •Эконометрика
- •И экономико-математические
- •Методы и модели
- •Учебная программа для специальностей:
- •Составила: Мокеева о.А., к. Ф.-м. Н., доцент
- •Учебная программа составлена на основе учебной программы «Эконометрика и экономико-математические методы и модели», утвержденной 31 августа 2010 г., регистрационный номер уд-046-10/баз.
- •Заведующий кафедрой
- •Пояснительная записка
- •Примерный тематический план
- •Содержание учебного материала
- •Тема 1. Теоретические основы математического моделирования
- •Тема 2. Модели парной регрессии
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
- •Тема 1 теоретические основы экономико-математического моделирования
- •1. Понятие о модели и моделировании
- •2. Классификация моделей
- •3. Экономико-математическая модель
- •4. Этапы экономико-математического моделирования
- •5. Принципы построения экономико-математических моделей
- •6. Общая характеристика экономико-математических методов
- •7. Эконометрика как наука
- •8. Эконометрика и другие науки
- •9. Эконометрические модели и их типы
- •10. Этапы эконометрического моделирования
- •11. Пример эконометрического исследования
- •12. Эконометрическое моделирование
- •Вопросы для самоконтроля
- •Тема 2 модели парной регрессии
- •1. Корреляционный и регрессионный анализы
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Оценка тесноты связи между количественными переменными
- •5. Проверка общего качества уравнения регрессии
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Парная линейная регрессия и корреляция»
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •5. Прогнозирование
- •Сурс спецификация и параметризация парной нелинейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Практические задания (вариант определяет преподаватель)
- •Методические указания
- •Литература
- •Вопросы для самоконтроля
- •Тема 3 модели множественной регрессии
- •1. Постановочный этап
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Статистическая значимость параметров регрессии
- •4.2. Проверка общего качества модели множественной регрессии
- •4.3. Предпосылки мнк
- •5. Прогнозирование на основе регрессионных моделей
- •6. Фиктивные переменные
- •7. Введение фиктивных переменных в модель
- •8. Тест Чоу
- •9. Фиктивные переменные и сезонность
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Множественная линейная регрессия и корреляция»
- •Порядок выполнения работы
- •Вопросы для самоконтроля
- •Тема 4 эконометрический анализ при нарушении классических модельных предположений
- •1. Проблема гетероскедастичности
- •2. Автокорреляция остатков регрессионной модели
- •3. Мультиколлинеарность факторов
- •Эконометрический анализ модельных предположений для множественной линейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Отчет по лабораторной и самостоятельной управляемой работе «Множественная регрессия и корреляция» студента _____________________________________ гр. ______
- •1. Постановочный этап.
- •4. Верификация модели.
- •Литература
- •Вопросы для самоконтроля
- •Тема 5 моделирование одномерных временных рядов
- •1. Динамические эконометрические модели
- •2. Компоненты временного ряда
- •3. Выравнивание временного ряда
- •4. Общая схема моделирования временного ряда
- •5. Автокорреляция остатков временного ряда
- •6. Анализ структурной стабильности тенденции
- •Примеры решения заданий
- •1.2Подобрать линию тренда, которая лучше всего описывает фактические данные и на ее основе сделать прогноз на 3 недели вперед. Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Анализ структуры временного ряда»
- •Порядок выполнения работы
- •2. Спецификация, параметризация и верификация модели.
- •3. Прогнозирование
- •Вопросы для самоконтроля
- •Тема 6 системы одновременных уравнений
- •1. Системы уравнений, используемые в эконометрике
- •2. Структурная и приведенная формы моделей
- •3. Проблема идентифицируемости модели
- •4. Методы оценивания параметров структурной модели
- •5. Практика применения систем одновременных уравнений в макроэкономическом анализе
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 7 модели сетевого планирования
- •1.2.11. Области применения моделей сетевого планирования
- •2. Основные понятия и элементы сетевого графика
- •3. Правила построения сетевого графика
- •4. Временные параметры сетевого графика
- •5. Линейный график Ганта
- •6. Задачи оптимизации сетевого графика
- •7. Модели сетевого планирования в условиях неопределенности
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 8 модели межотраслевого баланса
- •1. Понятие балансовой модели
- •2. Схема межотраслевого баланса
- •3. Варианты расчетов по балансовой модели
- •4. Модель отраслевого баланса в условиях ограничений на используемые внешние ресурсы
- •5. Из истории метода межотраслевого баланса
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 9 модели теории игр
- •1. Понятие игры, виды игр
- •2. Принцип минимакса
- •3. Упрощение матричных игр
- •1.2.24. Решение матричных игр без седловых точек
- •1.35. Игры с природой
- •1.46. Критерий Байеса
- •1.57. Критерий Лапласа
- •1.68. Максиминный критерий Вальда
- •1.79. Критерий Сэвиджа (минимаксного риска)
- •1.810. Критерий обобщенного максимума Гурвица
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •1.10Критерий Вальда
- •1.11Критерий Сэвиджа
- •1.12Критерий Гурвица
- •1.13Критерий Байеса
- •1.15Критерий Лапласа
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 10 модели массового обслуживания
- •1. Основные понятия систем массового обслуживания
- •2. Классификации систем массового обслуживания
- •3. Простейшие системы массового обслуживания
- •4. Примеры
- •5. Основные показатели эффективности системы массового обслуживания
- •5.1. Одноканальная система массового обслуживания с отказами
- •5.2. Многоканальная система массового обслуживания с отказами
- •5.3. Одноканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.4. Многоканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.5. Одноканальная система массового обслуживания с ожиданием и неограниченной очередью
- •3.3.6. Многоканальная система массового обслуживания с ожиданием и неограниченной очередью
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 11 модели управления товарными запасами
- •1. Основные теоретические сведения
- •2. Понятие о системах управления запасами
- •3. Простейшая модель оптимального размера партии поставки
- •4. Модель с учетом неудовлетворенных требований
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
4.3. Предпосылки мнк
Теорема Гаусса–Маркова, рассмотренная выше для парной регрессионной модели, оказывается верной и в общем случае для модели множественной линейной регрессии.
Теорема Гаусса–Маркова (для множественного регрессионного анализа). Пусть выполняются условия:
1) математическое ожидание случайного члена для всех наблюдений равно нулю;
2) дисперсия распределения случайного члена одинакова для всех наблюдений (постоянство дисперсии называется гомоскедастичностью, непостоянство – гетероскедастичностью);
3) случайные отклонения в любых двух наблюдениях являются независимыми, то есть их ковариация равна нулю (это условие называется условием отсутствия автокорреляции);
4) случайное отклонение независимо от объясняющих переменных;
5) случайные отклонения имеют нормальное распределение;
6) отсутствует мультиколлинеарность (нет зависимости между факторами). Тогда оценки параметров регрессии, полученные по МНК, являются несмещенными, состоятельными и эффективными.
Если предпосылки 2 и 3 нарушены, то оценки являются несмещенными и состоятельными, но неэффективными.
При построении классических линейных множественных регрессионных моделей должны выполняться и такие предположения, как:
– число наблюдений существенно больше числа объясняющих переменных;
– отсутствуют ошибки спецификации.
5. Прогнозирование на основе регрессионных моделей
Как и в случае парной модели, различают точечный и интервальный прогнозы. В первом случае прогнозируемая оценка – некоторое число, во втором – интервал, в котором находится истинное значение зависимой переменной с заданным уровнем значимости.
Точечный прогноз по уравнению регрессии осуществляется путем подстановки значений регрессоров в уравнение линии регрессии. Для классической линейной модели этот прогноз является несмещенным.
В дополнение к точечному прогнозу можно определить (по аналогии с парным случаем) границы возможного изменения прогнозируемого показателя, т.е. вычислить интервальный прогноз.
6. Фиктивные переменные
При постановке ряда регрессионных задач приходится рассматривать зависимость некоторого показателя не только от количественных переменных, принимающих значения из определенных числовых интервалов, но также зависимость от ряда факторов, имеющих два и более качественных уровня.
Качественные факторы, рассматриваемые как переменные регрессионной модели, называются в эконометрике фиктивными переменными. В противоположность значащим переменным, отражающим количественную сторону показателя, фиктивные переменные играют роль индикаторов, сигнализирующих об уровне рассмотрения задачи.
В качестве фиктивных переменных обычно используются так называемые дихотомические переменные, которые имеют только два уровня (например, «фактор действует» – «фактор не действует», «сезон летний» – «сезон зимний», «пол мужской» – «пол женский»).
7. Введение фиктивных переменных в модель
Для того, чтобы ввести фиктивную переменную в регрессионную модель, ей необходимо присвоить некоторые числовые значения, придав тем самым фиктивным переменным количественное содержание. В случае дихотомической переменной это делается следующим образом. Фиктивной переменной придается значение 1, если признак присутствует в наблюдении, и 0 – при его отсутствии. Таким образом, если z – дихотомическая переменная, то в описанной выше двоичном виде она формализуется равенством
Что касается фиктивной переменой, имеющей k уровней качества (k > 2), то при построении регрессионной модели она заменяется на k – 1 дихотомическую фиктивную переменную.
Например, при исследовании зависимости заработной платы от стажа работника и его образования модель может быть представлена в виде:
,
где
– часть заработной платы, объясняемая
стажем,
Третьей
дихотомической переменной z3
и не требуется, так как если работник
имеет начальное образование, то это уже
учтено при
.
Более того, с точки зрения требований
к качеству модели ее вводить нельзя,
так как тогда для любого работника
z1 + z2 + z3= 1,
то
есть переменные
становятся линейно зависимыми, а это
приводит к мультиколлинеарности. Такая
ситуация совершенной мультиколлинеарности
получила название «ловушка
фиктивной переменной».
Чтобы избежать ее, необходимо
руководствоваться следующим простым
правилом.
Если фиктивная переменная z имеет k качественных уровней, то при моделировании вместо нее используются k – 1 дихотомическая переменная z1, z2, …, zk-1.