- •Понятия безопасности полетов и уровня безопасности полетов
- •Цели и задачи «Государственной программы обеспечения безопасности полетов воздушных судов Гражданской авиации в рф
- •Пути повышения безопасности полетов изложенные в Государственной программе обеспечения безопасности полетов воздушных судов гражданской авиации
- •Цели и задачи международной организации икао
- •Международные стандарты и рекомендуемая практика в области безопасности полетов. Виды документов икао
- •Организационная структура управления гражданской авиации в рф
- •Государственный контроль и надзор за обеспечением безопасности полетов в рф
- •Основные направления деятельности Межгосударственного авиационного комитета
- •Организационная структура авиационной транспортной системы - эксплуатанта га
- •Структура нормативно правовых актов (документов) в области га рф
- •Сертификационные требования к эксплуатантам коммерческой гражданской авиации по вопросам обеспечения безопасности полетов;
- •Концепция безопасности полетов
- •Эволюция теории обеспечения безопасности полетов
- •Концепция причинности происшествия. Модель Ризона
- •Значение компонентов модели shel
- •Основные категории ошибок в деятельности членов летного экипажа вс
- •Стратегии контроля эксплуатационной ошибки в авиации
- •Три уровня культуры авиационного предприятия и их влияние на безопасность полетов;
- •Факторы опасности для безопасности полетов. Этапы анализа факторов опасности.
- •Внутренние источники выявления факторов опасности в авиационном предприятии
- •Внешние источники выявления факторов опасности в авиационном предприятии
- •Факторы риска для безопасности полетов. Основополагающие принципы управления факторами риска
- •Требование фап 128 к введении системы управления безопасностью полетов;
- •Функциональная схема системы управления безопасностью полетов
- •Стратегии управления безопасностью полетов
- •Элементы процесса системы управления безопасностью полетов
- •Система документации по безопасности полетов
- •Информационное обеспечение безопасности полётов эксплуатанта в га рф
- •Виды и источники первичной информации о безопасности полетов
- •Классификация критериев (показателей) оценки безопасности полетов
- •Классификация особых ситуаций
- •Динамика развития особых ситуаций
- •Классификационные признаки отказов авиационной техники
- •Основные факторы влияющие на надежность авиационной техники
- •Роль инженерно-авиационной службы в обеспечении безопасности полетов. Формы технического обслуживания
- •Нормирование этапов взлета
- •Нормирование горизонтального полета
- •Нормирование этапов посадки
- •Назначение средств объективного контроля, их классификация
- •Факторы, влияющие на рабочую загрузку экипажа
- •Краткая характеристика программs iosa (losa)
- •Краткая характеристика программа сrm
- •Концепция проблемы сfit - столкновения исправных вс с землей и препятствиями в управляемом полете
- •Программа safa "Инспекция на рампе иностранных перевозчиков"
- •Основные требования приказа Росавиации от 11.09.09 № 401 «Проведение инспекторских проверок гражданских воздушных судов в аэропортах рф»
- •Информация содержащаяся в первоначальном донесении о авиационном инциденте
- •Материалы прилагающиеся к Отчету о расследовании авиационного события
- •Проведение разбора и разработка мероприятий по результатам расследования авиационных инцидентов
- •Состав комиссии по расследованию авиационных событий
- •Обеспечение безопасности полетов при снижении и посадки вс
- •Обеспечение безопасности полетов в зонах обледенения;
- •Обеспечение безопасности полетов в грозовой деятельности
- •Обеспечение безопасности полетов в зоне сильной болтанки
Концепция причинности происшествия. Модель Ризона
Скрытые условия представляют собой условия, присутствующие в системе задолго до проявления вредного воздействия, которые приводятся в действие местными пусковыми факторами. Последствия скрытых условий могут не проявляться в течение длительного времени. По отдельности такие скрытые условия обычно не считаются вредными, поскольку изначально они не рассматриваются как отказы.
Значение компонентов модели shel
Модель SHEL (иногда называется модель SHEL(L)) можно использовать для наглядного представления взаимосвязей между различными компонентами и особенностями авиационной системы. Основной акцент в данной модели делается на индивидуума и интерфейс человека с другими компонентами и особенностями авиационной системы.
Название модели SHEL состоит из первых букв английских названий ее четырех компонентов:
а) Software (S) – Процедуры (процедуры, обучение, средства обеспечения и т. д.);
b) Hardware (H) – Объект (машины и оборудование);
с) Environment (E) – Среда (эксплуатационные условия, в которых должны функционировать остальные компоненты системы L-H-S);
d) Liveware (L) – Субъект (люди на рабочих местах).
Во избежание напряженности, которая может отрицательно повлиять на действия человека, необходимо осознать последствия нестыковок на границе интерфейса между различными блоками SHEL и центральным блоком "Субъект". Во избежание напряженности в системе другие компоненты системы должны быть тщательно подогнаны к людям.
Субъект-объект (L-H). Когда речь идет о действиях человека, чаще всего рассматривается интерфейс между человеком и машиной. Он определяет способ интерфейса человека с физической производственной средой, например: конструкция кресел с учетом особенностей телосложения, дисплеи с учетом сенсорных характеристик и возможностей усвоения информации пользователем, а также органы управления с удобными для пользователя функционированием, кодированием и размещением. Однако для человека характерна естественная тенденция приспосабливаться к нестыковкам интерфейса “L-H”. Такая тенденция может скрыть серьезные недостатки, которые могут проявиться только после события.
Субъект-процедуры (L-S). Интерфейс L-S представляет собой взаимосвязь человека с системами обеспечения, имеющимися на рабочем месте, например: нормативы, руководства, контрольные перечни, издания, стандартные эксплуатационные правила (СЭП) и программное обеспечение ЭВМ. Данный интерфейс включает такие “ориентированные на пользователя” аспекты, как актуальность, точность, форма представления, терминология, ясность и символика.
Субъект-субъект (L-L). Интерфейс L-L представляет собой взаимосвязь человека с другими лицами на рабочем месте. Летные экипажи, диспетчеры УВД, инженеры по техническому обслуживанию воздушных судов и другой эксплуатационный персонал работают в коллективах, и поэтому взаимоотношения, складывающиеся в таком коллективе, накладывают свой отпечаток на их работоспособность. С появлением концепции оптимизации работы экипажа (ОРЭ) этому виду интерфейса стало уделяться значительное внимание. Подготовка по ОРЭ и ее распространение на обслуживание воздушного движения (ОВД) (оптимизация работы группы (ОРГ)) и техническое обслуживание (оптимизация работы персонала технического обслуживания (ОРПТО)) нацелены на управление эксплуатационными ошибками. В сфере этого интерфейса находятся также взаимоотношения между сотрудниками и руководством, а также аспекты корпоративной культуры, корпоративного климата и производственных потребностей компании, все из которых могут существенно влиять на работоспособность человека.
Субъект-среда (L-E). Данный вид интерфейса охватывает взаимосвязь между человеком и внутренней и внешней средой. Внутренняя производственная среда включает такие физические параметры, как температура, освещение, уровень шума, вибрация и качество воздуха. Внешняя среда включает такие аспекты, как видимость, турбулентность и рельеф местности. Условия работы авиации (круглосуточный режим 7 дней в неделю) связаны с нарушением нормальных биологических ритмов, таких как режим сна. Кроме того, авиационная система функционирует в условиях наличия большого числа политических и экономических ограничений, которые в свою очередь оказывают влияние на общую обстановку в той или иной организации. Сюда можно отнести такие факторы, как адекватность физических средств и вспомогательной инфраструктуры, финансовое положение на местах и эффективность регулирования. В той же мере, как непосредственная производственная среда может создать напряженные ситуации, вынуждающие выбирать кратчайший путь, так и неадекватная вспомогательная инфраструктура может поставить под угрозу качество принимаемых решений.
