Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_vyshke_1_kurs_1_sem.doc
Скачиваний:
0
Добавлен:
22.02.2020
Размер:
1.54 Mб
Скачать

58. Касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных.

Пусть функция z=f(x,y) дифференцируема в точке некоторой области . Рассечем поверхность S, изображающую функцию z, плоскостями x= и y= . Плоскость x= пересекает поверхность S по некоторой линии , уравнение которой получается подстановкой в выражение исходной функции z=f(x,y) вместо х числа . Точка принадлежит кривой . В силу дифференцируемости функции z в точке функция также является дифференцируемой в точке y= . Следовательно, в этой точке в плоскости x= к кривой может быть проведена касательная . Построим касательную к кривой в точке x= . Прямые и определяют плоскость , которая называется касательной плоскостью к поверхности S в точке . Составим ее уравнение. Так как плоскость проходит через точку , то ее уравнение может быть записано в виде А( ) + В( ) + С( )=0, которое можно переписать так: (разделив уравнение на –С и обозначив А/-С= , В/-С= ). Найдем и . Уравнения касательных имеют вид: ; соответственно. Касательная лежит в плоскости . . В итоге . Следовательно, . Искомое уравнение касательной плоскости: . Прямая, проходящая через точку и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется ее нормалью. Каноническое уравнение нормали: .

Экстремум ф-ции нескольких переменных. Теорема(необходимые условия экстремума): Если в точке N( , ) дифференцируемая функция z=f(x,y) имеет экстремум, то ее частные производные в этой точке равны нулю: . Док-во: Зафиксируем одну из переменных. Положим, y= . Тогда получим ф-цию одной переменной, которая имеет экстремум при x- . Следовательно, согласно необходимому условию экстремума функции одной переменной, , т.е. . Замеч.: ф-ция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. Точка, в которой частные производные первого порядка функции z=f(x,y) равны нулю, т.е. , называется стационарной точкой функции z. Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками. В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Теорема(достаточное условие экстремума): Пусть в стационарной точке и некоторой ее окрестности функция F(x,y) имеет непрерывные частные производные до второго порядка включительно. Вычислим в точке значения обозначим . Тогда: 1.Если , то функция f(x,y) в точке имеет экстремум: максимум, если A<0, минимум, если A>0; 2.Если , то функция f(x,y) в точке экстремума не имеет. В случае экстремум в точке может быть, может не быть. Необходимы дополнительные исследования.

59. Условный экстремум функции нескольких переменных. Наибольшее и наименьшее значение функции нескольких переменных в области.

Наибольшее и наименьшее значение функции нескольких переменных в области.

Пусть функция y=f(x) непрерывна на отрезке [a,b]. Как известно, такая функция достигает своих наибол. и наим. значений. Это значения функция может принять либо во внутренней точке отрезка [a,b], либо на границе отрезка, т.е. при =a или =b. Если , то точку следует искать среди критических точек данной функции.

Получаем следующее правило нахождения наибольшего и наименьшего значений функции на [a,b]:

1) найти критические точки функции на интервале (a,b);

2) вычислить значения функции в найденных критических точках;

3) вычислить значения функции на концах отрезка, т.е. в точках x=a и x=b;

4) среди всех вычисленных значений функции выбрать наибольшее и наименьшее.

Замечания:

1. Если функция y=f(x) на отрезке [a,b] имеет лишь одну критическую точку и она является точкой максимума(минимума), то в этой точке функция принимает наибольшее(наименьшее) значение.

2. Если функция y=f(x) на отрезке [a,b] не имеет критических точек, то это означает, что на нем функция монотонно возрастает или убывает. Следовательно, свое наибольшее значение (М) функция принимает на одном конце отрезка, а наименьшее (m) – на другом.

60. Комплексные числа. Формулы Муавра. Комплексным числом назыв. выражение вида z = x + iy, где x и y - действительные числа, а i – так назыв. мнимая единица, . Если x=0, то число 0+iy=iy назыв. числом мнимым; если y=0, то число x+i0=x отождествляется с действительным числом х, а это означает, что множество R всех действит. чисел явл. подмножеством множества С всех комплексных чисел, т.е. . Число х назыв. действительной частью z, . Два комплексных числа и называются равными (z1=z2) тогда и только тогда, когда равны их действительные части и равны их мнимые части: x1=x2, y1=y2. В частности, комплексное число Z=x+iy равно нулю тогда и только тогда, когда x=y=0. Понятия «больше» и «меньше» для комплексных чисел не вводятся. Два комплексных числа z=x+iy и , отличающиеся лишь знаком мнимой части, называются сопряженными.

Геометрическое изображение комплексных чисел.

Всякое комплексное число z = x + iy можно изобразить точкой M(x,y) плоскости Oxy такой, что x=Re z, y=Im z. И, наоборот, каждую точку M(x;y) координатной плоскости можно рассматривать как образ комплексного числа z = x + iy. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью, т.к. на ней лежат действительные числа z = x + 0i = x. Ось ординат называется мнимой осью, так как на ней лежат чисто мнимые комплексные числа z = 0 + iy. Комплексное число Z=x+iy можно задать с помощью радиус-вектора r=OM=(x,y). Длина вектора r, изображающего комплексное число z, называется модулем этого числа и обозначается |z| или r. Величина угла между положит. Направлением действительной оси и вектором r, изображающим комплексное число, называется аргументом этого комплексного числа, обозначается Arg z или . Аргумент комплексного числа Z=0 не определен. Аргумент комплексного числа - величина многозначная и определяется с точностью до слагаемого где arg z - главное значение аргумента, заключенное в промежутке ( ), т.е. - (иногда в кач-ве главного значения аргумента берут величину, принадлежащую промежутку (0; )).

Запись числа z в виде z=x+iy называют алгебраической формой комплексного числа.

Действия над комплексными числами

Сложение. Суммой двух комплексных чисел z1=x1+iy1 и z2=x2+iy2 называется комплексное число, определяемое равенством: z1+z2=(x1+x2) + i(y1+y2). Сложение комплексных чисел обладает переместительным и сочетательным свойствами: z1+z2=z2+z1. (z1+z2)+z3=z1+(z2+z3). Вычитание. Вычитание определяется как действие, обратное сложению. Разностью комплексных чисел z1 и z2 называется такое комплексное число z, которое, будучи сложенным с z2, дает число z1, т.е. z=z1-z2, если z+z2=z1. Если z1=x1+iy1, z2=x2+iy2, то из этого определения легко получить z: z=z1-z2=(x1-x2) + i(y1-y2). Умножение. Произведением комплексных чисел z1=x1+iy1 и z2=x2+iy2 называется комплексное число, определяемое равенством z=z1z2= (x1x2-y1y2) + i(x1y2+y1x2). Отсюда, в частности, и следует: . Если числа заданы в тригонометрической форме: . При умножении комплексных чисел их модули перемножаются, а аргументы складываются. Формула Муавра (если есть n множителей и все они одинаковые): .