- •Устройство, принцип действия и конструкция роторов асинхронных двигателей
- •Скольжение, критическое скольжение, частота вращения, частота тока ротора, режимы работы ам
- •Уравнения ам до- и после приведения параметров роторной цепи к параметрам статорной цепи, схема замещения и векторная диаграмма ам под нагрузкой
- •Энергетическая диаграмма асинхронного двигателя
- •Рабочие характеристики ад
- •Пуск в ход ад: а) с короткозамкнутым ротором, б) с фазным ротором. Ад с улучшенными пусковыми свойствами ( глубокопазный и с двойной беличьей клеткой)
- •Способы регулирования частоты вращения ад. Закон регулирования частоты вращения при изменении частоты питающей сети (f)
- •Условия образования, характерные свойства и уравнения: а) пульсирующей волны, б) бегущей (вращающейся) волны.
- •Однофазный, конденсаторный двигатели, условия их пуска. Работа 3-х фазного двигателя от 1-но фазной сети
- •Линейный двигатель
- •Синхронные машины (см)
- •Устройство, принцип действия: а) синхронного генератора (сг), б) синхронного двигателя (сд). Конструкция роторов синхронных машин
- •4.9. Обратимость синхронного генератора
- •Системы возбуждения сг
- •Особенности конструкции см большой мощности. Типы см.
- •Реакция якоря сг при различных видах нагрузки ( активной, индуктивной, емкостной и смешанной)
- •Выражение для эдс явно – неявнополюсного сг
- •Регулирование реактивной и активной мощности сг. U-образные характеристики: а) синхронного генератора сг, б) Синхронного двигателя сд
- •Электромагнитная мощность, электромагнитный момент см. Угловая характеристика см. Условие статической устойчивости см. Перегрузочная способность см.
- •Способы пуска в ход синхронных двигателей. Асинхронный пуск сд.
- •Реактивный сд: принцип работы, конструкция ротора, формула для момента.
- •Шаговый импульсный двигатель
- •Условия включения синхронного генератора на параллельную работу
- •Номинальные тепловые режимы работы электрических машин
Системы возбуждения сг
Особенности конструкции см большой мощности. Типы см.
В синхронных машинах большой мощности отдельные части испытывают очень большие механические и электромагнитные нагрузки; по интенсивности нагрузок они превосходят все другие электрические машины. Поэтому в них выделяется большое количество теплоты, что требует применения весьма интенсивного охлаждения.
Стремление получить максимальную мощность в заданных габаритах или минимальные габариты при заданной мощности, характерное для проектирования всех электрических машин, в синхронных машинах привело к появлению своеобразных конструкций, сильно отличающихся друг от друга и определяемых в основном типом первичного двигателя.
По конструкции крупные синхронные машины подразделяют на турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и синхронные двигатели.
Типы синхронных машин и их устройство.
Синхронная машина состоит из неподвижной части — статора — и вращающейся части — ротора.
Статоры синхронных машин в принципе не отличаются от статоров асинхронных двигателей и состоят из корпуса, сердечника и обмотки.
Конструктивное исполнение статора синхронной машины может быть различным в зависимости от назначения и габаритов машины. Так, в многополюсных машинах большой мощности при наружном диаметре сердечника статора более 900 мм пластины сердечника делают из отдельных сегментов, которые при сборке образуют цилиндр сердечника статора. Корпуса статоров крупногабаритных машин делают разъемными, что необходимо для удобства транспортировки и монтажа этих машин.
Роторы синхронных машин могут иметь две принципиально различающиеся конструкции:
явнополюсную и неявнополюсную. В энергетических установках по производству
электроэнергии переменного тока в качестве первичных
(приводных) двигателей синхронных генераторов применяют в основном три вида двигателей: паровые турбины, гидравлические турбины либо двигатели внутреннего сгорания (дизели). Применение любого из перечисленных двигателей принципиально влияет на конструкцию синхронного генератора.
Если приводным двигателем является гидравлическая турбина, то синхронный генератор
называют гидрогенератором. Гидравлическая турбина обычно развивает небольшую частоту вращения (60—500 об/мин), поэтому для получения переменного тока промышленной частоты (50 Гц) в гидрогенераторе применяют ротор с большим числом полюсов. Роторы гидрогенераторов имеют явнополюсную конструкцию, т. е. с явно выраженными полюсами, при которой каждый полюс выполняют в виде отдельною узла, состоящего из сердечника 1,полюсного наконечника 2 и полюсной катушки 3. Все полюсы ротора закреплены на ободе 4, являющемся также и ярмом магнитной системы машины, в котором замыкаются потоки полюсов.
Гидрогенераторы обычно изготовляются с вертикальным расположением вала . Паровая турбина работает при большой частоте вращения, поэтому приводимый ею во вращение генератор, называемый турбогенератором.
Гидрогенератор
1 — корпус статора; 2 — сердечник
статора; 3 — полюс ротора; 4 —
обод ротора; 5 — грузонесущая
крестовина.
В процессе работы турбогенератора на его ротор действуют значительные центробежные силы. Поэтому по условиям механической
прочности в турбогенераторах применяют неявнополюсный ротор, имеющий вид удлиненного стального цилиндра.
Турбогенератор:
1 — возбудитель, 2 — корпус, 3 — сердечник
статора, 4 — секции водородного охлаждения, 5 —
ротор профрезерованными на поверхности
продольными пазами для обмотки возбуждения.
Сердечник неявнополюсного ротора изготовляют в виде цельной стальной поковки вместе с хвостовиками (концами вала) или же делают сборным. Обмотка возбуждения
неявнополюсного ротора занимает лишь 2/3 его поверхности (по периметру). Оставшаяся 1/3 поверхности образует полюсы. Для защиты лобовых частей обмотки ротора
от разрушения действием центробежных сил ротор с двух сторон прикрывают стальными бандажными кольцами (каппами), изготовляемыми обычно из немагнитной стали.
Турбогенераторы
и дизельгенераторы изготовляют с
горизонтальным расположением вала.
Дизельгенераторы рассчитывают на частоту вращения 600—1500 об/мин и выполняют с
явнополюсным ротором.
Большую группу синхронных машин составляют синхронные двигатели, которые обычно
изготовляются мощностью до нескольких тысяч киловатт и предназначены для привода мощных вентиляторов, мельниц, насосов и других устройств, не требующих регулирования частоты вращения.
