
- •Классификация случайных событий. Классическое определение вероятности. Свойства вероятности события, непосредственный подсчет вероятности. Примеры.
- •Свойства вероятности события:
- •Статистическое определение вероятности события и условия его применимости. Пример.
- •Несовместные и совместные события. Сумма событий. Теорема сложения вероятностей (с доказательством).
- •2 События называются несовместимыми, если появление одного из них исключает появление другого в одном и том же испытании.
- •Полная группа событий. Противоположные события. Соотношение между вероятностями противоположных событий (с выводом).
- •Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятностей (с доказательством).
- •Формулы полной вероятности и Байеса (с доказательством). Примеры.
- •Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
- •Локальная теорема Муавра-Лапласа, условия ее применимости. Свойства функции Дх). Пример.
- •Асимптотическая формула Пуассона и условия ее применимости. Пример.
- •Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
- •Следствия из интегральной теоремы Муавра-Лапласа (с выводом). Примеры.
- •Понятие «случайная величина» и ее описание. Дискретная случайная величина и ее закон (ряд) распределения. Независимые случайные величины. Примеры.
- •Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
- •Дисперсия дискретной случайной величины и ее свойства (с выводом). Примеры.
- •Функция распределения случайной величины, ее определение, свойства и график.
- •Функция распределения случайной величины есть неубывающая функция на всей числовой оси.
- •Вероятность попадания случайной величины в интервал (включая ) равна при ращению ее функции распределения на этом интервале, т.Е.:
- •Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дисперсия нсв.
- •Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
- •Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распределения Пуассона.
- •Математическое ожидание и дисперсия числа и частости наступлений события в п повторных независимых испытаниях (с выводом).
- •Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
- •Функция распределения нормально распределенной случайной величины и ее выражение через функцию Лапласа.
- •Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило «трехсигм».
- •Понятие двумерной (/7-мерной) случайной величины. Примеры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таблице распределения.
- •Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случайных величин.
- •Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
- •Неравенство Маркова (лемма Чебышева) (с выводом). Пример.
- •Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному закону, и для частости события.
- •Теорема Чебышева (с доказательством), ее значение и следствие. Пример.
- •Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
- •Неравенство Чебышева для средней арифметической случайных величин (с выводом).
- •Центральная предельная теорема. Понятие о теореме Ляпунова и ее значение. Пример.
- •Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда. Упрощенный способ их расчета.
- •Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
- •Оценка генеральной доли по собственно-случайной выборке. Несмещенность и состоятельность выборочной доли.
- •Оценка генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность выборочной средней.
- •Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
- •Понятие об интервальном оценивании. Доверительная вероятность и доверительный интервал. Предельная ошибка выборки. Ошибки репрезентативности выборки (случайные и систематические).
- •Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной средней.
- •Определение необходимого объема повторной и бесповторной выборок при оценке генеральной средней и доли.
- •Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
- •Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия.
- •Критерий согласия х2-Пирсона и схема его применения.
- •Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
- •Линейная парная регрессия. Система нормальных уравнений для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
- •Упрощенный способ:
Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
Интегральная теорема Муавра-Лапласа. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что число m наступления события А в n независимых испытаниях заключено в пределах от а до b (включительно), при достаточно большом числе n приближенно равна
,
Где
- функция (или интеграл вероятностей)
Лапласа;
,
.
Формула называется интегральной формулой МуавраЛапласа. Чем больше n, тем точнее эта формула. При выполнении условия npq ≥ 20 интегральная формула , так же как и локальная, дает, как правило, удовлетворительную для практики погрешность вычисления вероятностей.
Функция Ф(х) табулирована (см. табл.). Для применения этой таблицы нужно знать свойства функции:
Функция Ф(х) нечетная, Т.е. Ф(-х) = -Ф(х).
Функция Ф(х) монотонно возрастающая, причем при х → +∞ Ф(х) → 1 (практически можно считать, что уже при х > 4 Ф(х) ≈ 1).
Пример. В некоторой местности из каждых 100 семей 80 имеют холодильники. Вычислить вероятность того, что от 300 до 360 (включительно) семей из 400 имеют холодильники.
Решение. Применяем интегральную теорему МуавраЛапласа (npq = 64 ≥ 20). Вначале определим:
,
.
Теперь по формуле , учитывая свойства Ф(х), получим
.
(по табл. Ф(2,50) = 0,9876, Ф(5,0) ≈ 1)
Следствия из интегральной теоремы Муавра-Лапласа (с выводом). Примеры.
Рассмотрим следствие интегральной теоремы МуавраЛапласа.
Следствие. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и 1, то при достаточно большом числе n независимых испытаний вероятность того, что:
а) число m
наступлений события А отличается от
произведения nр
не более, чем на величину ε > 0 (по
абсолютной величине), т.е.
;
б) частость
события
А заключена в пределах от α до β
(включительно), т.е.
,
Где
,
.
в) частость
события А отличается от его вероятности
р не более, чем на величину Δ > 0 (по
абсолютной величине), т.е.
.
□ 1) Неравенство
равносильно двойному неравенству пр
- Е ~ т ~ пр + Е. Поэтому по интегральной
формуле
:
.
2) Неравенство
равносильно
неравенству a
≤ m
≤ b
при a
= nα
и b
= nβ.
Заменяя в формулах
и
,
величины а и b
полученными выражениями, получим
доказываемые формулы
и
,
.
3) Неравенство
равносильно
неравенству
.
Заменяя в формуле
,
получим доказываемую формулу
.
Пример. По статистическим данным в среднем 87% новорожденных доживают до 50 лет. Найти вероятность того, что из 1000 новорожденных доля (частость) доживших до 50 лет будет: а) заключена в пределах от 0,9 до 0,95; б) будет отличаться от вероятности этого события не более, чем на 0,04 (по абсолютной величине)?
Решение. а) Вероятность р того, что новорожденный доживет до 50 лет, равна 0,87. Т.к. n = 1000 велико (условие npq = 1000·0,87·0,13 = 113,1 ≥ 20 выполнено), то используем следствие интегральной теоремы Муавра-Лапласа. Вначале определим:
,
.
Теперь по формуле
:
.
Б) По формуле
:
.
Так как неравенство
равносильно неравенству
,
полученный результат означает, что
практически достоверно, что от 0,83 до
0,91 числа новорожденных из 1000 доживут
до 50 лет.