
- •Классификация случайных событий. Классическое определение вероятности. Свойства вероятности события, непосредственный подсчет вероятности. Примеры.
- •Свойства вероятности события:
- •Статистическое определение вероятности события и условия его применимости. Пример.
- •Несовместные и совместные события. Сумма событий. Теорема сложения вероятностей (с доказательством).
- •2 События называются несовместимыми, если появление одного из них исключает появление другого в одном и том же испытании.
- •Полная группа событий. Противоположные события. Соотношение между вероятностями противоположных событий (с выводом).
- •Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятностей (с доказательством).
- •Формулы полной вероятности и Байеса (с доказательством). Примеры.
- •Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
- •Локальная теорема Муавра-Лапласа, условия ее применимости. Свойства функции Дх). Пример.
- •Асимптотическая формула Пуассона и условия ее применимости. Пример.
- •Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
- •Следствия из интегральной теоремы Муавра-Лапласа (с выводом). Примеры.
- •Понятие «случайная величина» и ее описание. Дискретная случайная величина и ее закон (ряд) распределения. Независимые случайные величины. Примеры.
- •Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
- •Дисперсия дискретной случайной величины и ее свойства (с выводом). Примеры.
- •Функция распределения случайной величины, ее определение, свойства и график.
- •Функция распределения случайной величины есть неубывающая функция на всей числовой оси.
- •Вероятность попадания случайной величины в интервал (включая ) равна при ращению ее функции распределения на этом интервале, т.Е.:
- •Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дисперсия нсв.
- •Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
- •Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распределения Пуассона.
- •Математическое ожидание и дисперсия числа и частости наступлений события в п повторных независимых испытаниях (с выводом).
- •Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
- •Функция распределения нормально распределенной случайной величины и ее выражение через функцию Лапласа.
- •Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило «трехсигм».
- •Понятие двумерной (/7-мерной) случайной величины. Примеры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таблице распределения.
- •Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случайных величин.
- •Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
- •Неравенство Маркова (лемма Чебышева) (с выводом). Пример.
- •Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному закону, и для частости события.
- •Теорема Чебышева (с доказательством), ее значение и следствие. Пример.
- •Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
- •Неравенство Чебышева для средней арифметической случайных величин (с выводом).
- •Центральная предельная теорема. Понятие о теореме Ляпунова и ее значение. Пример.
- •Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда. Упрощенный способ их расчета.
- •Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
- •Оценка генеральной доли по собственно-случайной выборке. Несмещенность и состоятельность выборочной доли.
- •Оценка генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность выборочной средней.
- •Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
- •Понятие об интервальном оценивании. Доверительная вероятность и доверительный интервал. Предельная ошибка выборки. Ошибки репрезентативности выборки (случайные и систематические).
- •Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной средней.
- •Определение необходимого объема повторной и бесповторной выборок при оценке генеральной средней и доли.
- •Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
- •Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия.
- •Критерий согласия х2-Пирсона и схема его применения.
- •Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
- •Линейная парная регрессия. Система нормальных уравнений для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
- •Упрощенный способ:
Неравенство Маркова (лемма Чебышева) (с выводом). Пример.
Теорема. Если СВ Х принимает только неотрицательные значения и имеет математическое ожидание, то для любого положительного числа А верно неравенство:
☺ Доказательство
проведем для дискретной СВ Х. Расположим
ее значения в порядке возрастания, из
которых часть значений
будут не более числа А, а другая часть
-
будут больше А, т.е.
(рис.
6.1) .
Запишем выражение
для математического ожидания М(Х):
,
где
- вероятности того, что СВ Х примет
значения соответственно
.
Отбрасывая первые
k неотрицательных слагаемых (напомним,
что все
),
получим:
.
Заменяя в неравенстве
значения
меньшим числом А, получим более сильное
неравенство:
или
.
Cумма вероятностей
в левой части полученного неравенства
представляет собой сумму вероятностей
событий
,
т.е. вероятность события Х>А. Поэтому
.☻
Т.к. события Х > А и Х ≤ А противоположные, то заменяя Р(Х > А) выражением 1 - Р(Х ≤ А), придем к другой форме неравенства Маркова:
.
Неравенство Маркова применимо к любым неотрицательным случайным величинам.
Пример. Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор: а) превысит 400; б) будет не более 500.
Решение.
а) По условию М(Х) = 300. По формуле
:
т.е. вероятность того, что число вызовов
превысит 400, будет не
более 0,75.
б) По формуле
:
т.е.
вероятность того, что число вызовов не
более 500, будет не
менее 0,4.
Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному закону, и для частости события.
Теорема.
Для любой случайной величины, имеющей
математическое ожидание и дисперсию,
справедливо неравенство Чебышева:
,
где а = М(Х), е > 0.
☺ Применим
неравенство Маркова в форме
к случайной величине
,
взяв в качестве положительного числа
.
Получим:
.
Т.к. неравенство
равносильно
неравенству
,
а
есть
дисперсия случайной величины Х, то из
неравенства получаем доказываемое
неравенство. ☻
Учитывая, что
события
и
противоположны, неравенство Чебышева
можно записать и в другой форме:
.
Неравенство Чебышева применимо для любых случайных величин. В форме оно устанавливает верхнюю границу, а в форме - нижнюю границу вероятности рассматриваемого события.
Запишем неравенство Чебышева в форме для некоторых случайных величин:
а) для СВ Х = m,
имеющей биноминальный закон распределения
с математическим ожиданием а = М(Х) = nр
и дисперсией D(X) = npq:
.
б) для частости
события в n независимых испытаниях, в
каждом из которых оно может произойти
с одной и той же вероятностью
и имеющей дисперсию
:
.
3амечание.
Если М(Х) > А или
,
то правые части неравенств Маркова и
Чебышева в форме соответственно
и
будут отрицательными
а в форме
и
будут больше
1.
Это означает, что применение указанных неравенств в этих случаях приведет к тривиальному результату: вероятность события больше отрицательного числа либо меньше числа, превосходящего 1.