
- •Классификация случайных событий. Классическое определение вероятности. Свойства вероятности события, непосредственный подсчет вероятности. Примеры.
- •Свойства вероятности события:
- •Статистическое определение вероятности события и условия его применимости. Пример.
- •Несовместные и совместные события. Сумма событий. Теорема сложения вероятностей (с доказательством).
- •2 События называются несовместимыми, если появление одного из них исключает появление другого в одном и том же испытании.
- •Полная группа событий. Противоположные события. Соотношение между вероятностями противоположных событий (с выводом).
- •Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятностей (с доказательством).
- •Формулы полной вероятности и Байеса (с доказательством). Примеры.
- •Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
- •Локальная теорема Муавра-Лапласа, условия ее применимости. Свойства функции Дх). Пример.
- •Асимптотическая формула Пуассона и условия ее применимости. Пример.
- •Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
- •Следствия из интегральной теоремы Муавра-Лапласа (с выводом). Примеры.
- •Понятие «случайная величина» и ее описание. Дискретная случайная величина и ее закон (ряд) распределения. Независимые случайные величины. Примеры.
- •Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
- •Дисперсия дискретной случайной величины и ее свойства (с выводом). Примеры.
- •Функция распределения случайной величины, ее определение, свойства и график.
- •Функция распределения случайной величины есть неубывающая функция на всей числовой оси.
- •Вероятность попадания случайной величины в интервал (включая ) равна при ращению ее функции распределения на этом интервале, т.Е.:
- •Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дисперсия нсв.
- •Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
- •Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распределения Пуассона.
- •Математическое ожидание и дисперсия числа и частости наступлений события в п повторных независимых испытаниях (с выводом).
- •Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
- •Функция распределения нормально распределенной случайной величины и ее выражение через функцию Лапласа.
- •Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило «трехсигм».
- •Понятие двумерной (/7-мерной) случайной величины. Примеры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таблице распределения.
- •Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случайных величин.
- •Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
- •Неравенство Маркова (лемма Чебышева) (с выводом). Пример.
- •Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному закону, и для частости события.
- •Теорема Чебышева (с доказательством), ее значение и следствие. Пример.
- •Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
- •Неравенство Чебышева для средней арифметической случайных величин (с выводом).
- •Центральная предельная теорема. Понятие о теореме Ляпунова и ее значение. Пример.
- •Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда. Упрощенный способ их расчета.
- •Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
- •Оценка генеральной доли по собственно-случайной выборке. Несмещенность и состоятельность выборочной доли.
- •Оценка генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность выборочной средней.
- •Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
- •Понятие об интервальном оценивании. Доверительная вероятность и доверительный интервал. Предельная ошибка выборки. Ошибки репрезентативности выборки (случайные и систематические).
- •Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной средней.
- •Определение необходимого объема повторной и бесповторной выборок при оценке генеральной средней и доли.
- •Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
- •Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия.
- •Критерий согласия х2-Пирсона и схема его применения.
- •Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
- •Линейная парная регрессия. Система нормальных уравнений для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
- •Упрощенный способ:
Функция распределения случайной величины, ее определение, свойства и график.
Определение. Функцией распределения случайной величины Х называется функция F(х), выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х:
|
Функцию F(x) иногда называют интегральной функцией распределения или интегральным законом распределения.
Геометрически функция распределения интерпретируется как вероятность того, что случайная точка Х попадет левее за данной точки х.
Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений. Сумма всех скачков функции F(х) равна 1.
Общие свойства функции распределения.
1.
Функция распределения случайной величины
есть неотрицательная функция, заключенная
между нулем и единицей:
.
☺ Утверждение следует из того, что функция распределения – это вероятность. ☻
Функция распределения случайной величины есть неубывающая функция на всей числовой оси.
☺ Пусть
и
-
точки числовой оси, причем
>
.
Покажем, что
.
Рассмотрим 2 несовместных события
,
.
Тогда
.
Это соотношение
между событиями легко усматривается
из их геометрической интерпретации
(рис.3.6). По теореме сложения:
или
откуда
.
Так как вероятность
,
то
,
т.е.
-
неубывающая функция. ☻
На минус бесконечности функция распределения равна нулю, на плюс бесконечности равна единице, т.е.
.
☺
как вероятность
невозможного события
.
как вероятность
достоверного события
.
☻
Вероятность попадания случайной величины в интервал (включая ) равна при ращению ее функции распределения на этом интервале, т.Е.:
.
☺ Формула следует непосредственно из формулы . ☻
Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дисперсия нсв.
Определение. Случайная величина Х называется непрерывной, если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек (точки излома). |
Н
а
рис. 3.7 показана Функция распределения
непрерывной случайной величины Х,
дифференцируемая во всех точках, кроме
трех точек излома.
Теорема. Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю.
☺ Покажем, что для
любого значения
случайной величины Х вероятность
.
Представим
в виде
.
Применяя свойство функции распределения случайной величины Х и учитывая непрерывность F(x), получим:
.
☻
Из приведенной выше теоремы следует, что нулевой вероятностью могут обладать и возможные события, так как событие, состоящее в том, что случайная величина Х приняла конкретное значение , является возможным.
Следствие.
Если Х - непрерывная случайная величина,
то вероятность попадания случайной
величины в интервал
не зависит от того, является этот интервал
открытым или закрытым, т.е.
.
Математическим
ожиданием непрерывной случайной
величины
Х, возможные
значения которой принадлежат отрезку
[a,b], называется определенный интеграл
.
Если возможные значения случайной
величины рассматриваются на всей
числовой оси, то математическое ожидание
находится по формуле:
.
При этом предполагается, что интеграл
абсолютно сходится.
Дисперсией
непрерывной случайной величины
называется математическое ожидание
квадрата ее отклонения.
.
По аналогии с
дисперсией дискретной случайной
величины, для
практического вычисления дисперсии
используется формула:
.