Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по нейроинформатике.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
9.7 Mб
Скачать

Виды функций активации

Вид функции активации во многом определяет функциональные возможности нейронной сети. В таблице приведены некоторые виды функций активации, применяемые при конструировании нейронных сетей.

№ п/п

Название

Формула

Область применения

1

линейная

(-∞; +∞)

2

полулинейная

(0; +∞)

3

логистическая (сигмоидальная)

(0; 1)

4

гиперболический

тангенс

(-1; 1)

5

экспоненциальная

(0; +∞)

7

пороговая

(-1; 1)

8

линейная с насыщением

(-1; 1)

Классификация нейронных сетей

Классификация нейронных сетей по виду топологии (по виду распространения сигнала в процессе функционирования НС):

Под топологией нейронной сети понимается графическая иллюстрация соединения нейронов между собой в этой сети.

Однослойная НС

(персептрон)

Многослойная НС

НС с прямыми связями

НС с перекрёстными связями.

NONE

НС с обратными связями

(рекуррентные).

НС с латеральными связями

(с латеральным торможением)

NONE

В нейронных сетях с перекрёстными связями обеспечивается более тонкое влияние каждого из слоёв на выход сети. Структура является более оптимальной (минимизированной) по сравнению с НС с последовательными связями, что увеличивает скорость работы сети.

Рекуррентные нейронные сети используются для моделирования динамических процессов.

Классификация нейронных сетей по типу связи:

  1. Полносвязные нейронные сети:

  1. Нейронные сети с последовательными связями:

  1. Слабосвязанные структуры:

а) прямоугольная б) гексагональная???

Классификация нейронных сетей по способу решения задачи:

  1. Формируемые сети: проектируются для формализуемых задач, имеющих чётко сформулированный в нейросетевом базисе алгоритм решения конкретной задачи.

  2. Сети с формируемой матрицей связей: применяются для трудно формализуемых задач. Как правило, имеют одинаковую структуру и различаются лишь матрицей связей (сеть Хопфилда). Достоинство: наглядность в работе.

  3. Обучаемые сети: используются для решения неформализуемых задач. В процессе обучения сети автоматически изменяются такие её параметры, как коэффициенты синаптической связи, а в некоторых случаях и топология. Недостаток: большое время обучения сети.

  4. Комбинированные (смешанные) сети: сочетают в себе признаки двух, а то и трёх видов. Как правило, сети многослойные, каждый слой которых представляется различной топологией и обучается по определённому алгоритму. Получают наибольшее распространение, так как дают широкие возможности разработчику.