
- •Искусственный интеллект. Основные направления и этапы развития.
- •Структура мозга. Уровни моделирования. Основные элементы моделей.
- •Виды функций активации
- •Классификация нейронных сетей
- •Применение нейронных сетей
- •Методика решения формализуемых задач в нейросетевом базисе
- •Настройка нейронной сети на решение прикладных задач
- •Обучение нс Основные понятия
- •Основные алгоритмы обучения нс без обратных связей
- •Персептронные алгоритмы обучения Алгоритм обучения по правилу Хебба
- •Алгоритм обучения Розенблатта
- •Процедура Уидроу-Хоффа
- •Обучение многослойной нейронной сети без обратных связей Математическая постановка задачи обучения
- •Алгоритм обратного распространения ошибки
- •Генетические алгоритмы оптимизации
- •Суть генетического алгоритма
- •Методы формирования популяции
- •Иллюстрация работы генетического алгоритма
- •Особенности реализации генетических алгоритмов
- •Модификация основных параметров га
- •Мобильные га
- •Динамическое изменение параметров в процессе выполнения га
- •Разновидности га
- •Применение генетического алгоритма к обучению многослойного персептрона
- •Рекуррентные и рециркуляционные сети
- •Сеть Хопфилда
- •Применение сети Хопфилда к решению задач комбинаторной оптимизации
- •Сеть Хемминга
- •Самоорганизующиеся нейронные сети Самоорганизация в нс
- •Конкурентное обучение
- •Сеть Кохонена
- •Алгоритмы кластеризации
- •Пороговый алгоритм
- •Алгоритм максимального расстояния
- •Алгоритм внутригруппового среднего (метод k-средних, k-means clustering, c-means clustering)
- •Алгоритм нечётких k-средних (fuzzy c-means clustering)
- •Алгоритм состязания процедур соединения и разделения.
- •Сети адаптивного резонанса
- •Основы адаптивного резонанса
- •Архитектура art
- •Комбинированные нс
- •Иерархический классификатор
- •Нейронные сети с функциональными связями
- •Решающие деревья
- •Методы проектирования нейросетевых архитектур для решения прикладных задач
- •Выбор топологии нс для решения задач нейроуправления
- •Практическое применение нс Управление движением робота по заданной траектории
- •Обучение и формирование обучающей выборки для управления мобильным роботом
- •Тестирование робота
- •Автономное управление мобильным роботом
Виды функций активации
Вид функции активации во многом определяет функциональные возможности нейронной сети. В таблице приведены некоторые виды функций активации, применяемые при конструировании нейронных сетей.
№ п/п |
Название |
Формула |
Область применения |
1 |
линейная |
|
(-∞; +∞) |
2 |
полулинейная |
|
(0; +∞) |
3 |
логистическая (сигмоидальная) |
|
(0; 1) |
4 |
гиперболический тангенс |
|
(-1; 1) |
5 |
экспоненциальная |
|
(0; +∞) |
7 |
пороговая |
|
(-1; 1) |
8 |
линейная с насыщением |
|
(-1; 1) |
Классификация нейронных сетей
Классификация нейронных сетей по виду топологии (по виду распространения сигнала в процессе функционирования НС):
Под топологией нейронной сети понимается графическая иллюстрация соединения нейронов между собой в этой сети.
|
Однослойная НС (персептрон) |
Многослойная НС |
НС с прямыми связями |
|
|
НС с перекрёстными связями. |
NONE |
|
НС с обратными связями (рекуррентные). |
|
|
НС с латеральными связями (с латеральным торможением) |
NONE |
|
В нейронных сетях с перекрёстными связями обеспечивается более тонкое влияние каждого из слоёв на выход сети. Структура является более оптимальной (минимизированной) по сравнению с НС с последовательными связями, что увеличивает скорость работы сети.
Рекуррентные нейронные сети используются для моделирования динамических процессов.
Классификация нейронных сетей по типу связи:
Полносвязные нейронные сети:
Нейронные сети с последовательными связями:
Слабосвязанные структуры:
а) прямоугольная б) гексагональная???
Классификация нейронных сетей по способу решения задачи:
Формируемые сети: проектируются для формализуемых задач, имеющих чётко сформулированный в нейросетевом базисе алгоритм решения конкретной задачи.
Сети с формируемой матрицей связей: применяются для трудно формализуемых задач. Как правило, имеют одинаковую структуру и различаются лишь матрицей связей (сеть Хопфилда). Достоинство: наглядность в работе.
Обучаемые сети: используются для решения неформализуемых задач. В процессе обучения сети автоматически изменяются такие её параметры, как коэффициенты синаптической связи, а в некоторых случаях и топология. Недостаток: большое время обучения сети.
Комбинированные (смешанные) сети: сочетают в себе признаки двух, а то и трёх видов. Как правило, сети многослойные, каждый слой которых представляется различной топологией и обучается по определённому алгоритму. Получают наибольшее распространение, так как дают широкие возможности разработчику.