
- •22. Сопротивление проводников, причины его изменения.
- •23. Электрический ток в жидкостях. Методы повышения проводимости жидкости.
- •24. Электрический ток в газах при различных напряжённостях электрического поля
- •26. Термоэлектрические явления на спаях проводников. Термопара и её работа.
- •28. Дырочно-электронный переход в полупроводниках
- •36. Понятие электромагнитных волн, волновое уравнение для световой волны.
- •27. Понятие полупроводников и механизмов их проводимости
- •37. Связь параметров электрических и магнитных процессов в теории Максвелла
- •29. Понятие магнитного поля. Сила Лоренца и сила Ампера
- •30. Движение заряженной частицы в электрическом и магнитном полях.
- •32. Явления электромагнитной индукции. Правило Ленца.
- •33. Взаимная индукция соленоидов. Работа трансформатора.
- •34. Причины существования ферромагнетиков, парамагнетиков, диамагнетиков.
- •35. Формирование электромагнитных колебаний в колебательном контуре.
- •38. Законы отражения и преломления света
- •39. Понятия геометрической оптики. Тонкие линзы, их фокусное расстояние, оптическая сила.
28. Дырочно-электронный переход в полупроводниках
p-n-Переходили электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.
В полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд. Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака.
Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие и перетекание зарядов прекращается
36. Понятие электромагнитных волн, волновое уравнение для световой волны.
Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.
Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.
Волновое уравнение
По своей физической природе световые волны являются волнами электромагнитными. Поэтому волновая оптика непосредственно основывается на уравнениях Максвелла.
Уравнения Максвелла связывают вектор напряженности электрического поля E и вектор электрической индукции D с вектором напряженности магнитного поля H и вектором индукции B. В отсутствие токов и свободных электрических зарядов они имеют вид:
где и - соответственно электрическая и магнитная постоянные, и - относительные соответственно диэлектрическая и магнитная проницаемости среды.
27. Понятие полупроводников и механизмов их проводимости
Полупроводник - вещество, обладающее электронной и дырочной проводимостью и по значению удельного электросопротивления занимающие промежуточное положение между проводниками (металлами) и изоляторами (диэлектриками). Электрические свойства полупроводников очень чувствительны к внешним воздействиям (нагреванию, облучению, освещению и др.).
Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает
Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник.
У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами (рис. 2).
Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T.
Такой ход зависимости ρ(T) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов