
- •Специфика законов микромира. Квантовая и классическая физика. Постоянная Планка, ее физический смысл, размерность.
- •2. Явления, подтверждающие сложность строения атома. Элементарный электрический заряд. Открытие электрона.
- •3. Периодическое изменение химических свойств атомов. Периодическая система элементов д.И.Менделеева. Ее значение для химии и физики.
- •5. Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Неспособность классической физики объяснить устойчи-вость атома и характер атомных спектров.
- •6. Постулаты Бора. Квантование орбит электрона. Боровская теория водо-родного атома и водородоподобных ионов. Главное квантовое число. Боровский радиус. Опыты Франка и Герца.
- •Атом водорода. Линейчатые спектры
- •8. Гипотеза де-Бройля. Опыты Дэвиссона и Джермера. Дифракция электро-нов, атомов и молекул. Корпускулярно-волновой дуализм. Особенности поведения микрообъектов.
- •9. Статистический смысл волн де-Бройля. Сопряженные переменные. Принцип неопределенности Гейзенберга. Оценка размера и минимальной энергии атома на основе соотношения неопределенности.
- •10. Волновая функция (пси-функция). Нестационарное и стационарное урав-нения Шредингера. Операторы физических величин. Гамильтониан.
- •11. Условия, накладываемые на волновую функцию. Условие нормировки. Частица в одномерной потенциальной яме. Квантование энергии. Собственные функции. Принцип суперпозиции.
- •12. Прохождение частиц через потенциальный барьер. Коэффициенты отра-жения и прозрачности. Туннельный эффект.
- •13. Гармонический осциллятор. Нулевая энергия гармонического осциллято-ра. Правила отбора.
- •14. Уравнение Шредингера для атома водорода. Разделение переменных. Уровни энергии атома водорода. Волновые функции и распределение плотности вероятности. Момент импульса электрона и его проекции.
- •15. Классификация состояний и спектр атома водорода. Главное, азимуталь-ное и магнитное квантовые числа. Правила отбора. Вырождение энергетических уровней (кратность вырождения).
- •16. Сложение моментов импульса в квантовой механике. Спин электрона. Спин-орбитальное взаимодействие и тонкая структура спектральных линий.
- •17. Уровни энергии и спектр атома гелия (парагелий, ортогелий).
- •18. Спектры щелочных металлов. Снятие вырождения уровней. Термы ще-лочных металлов. Экспериментальная формула Ридберга. Ридберговские поправки.
- •22. Принцип Паули. Электронная конфигурация атома. Типы связей элек-тронов в атоме. Классификация состояний.
- •23. Основное состояние многоэлектронного атома. Правила Хунда. Последо-вательность заполнения электронных оболочек атома.
- •26. Атомы во внешних магнитных полях. Снятие вырождения по mJ . Эффект Зеемана. Эффект Пашена – Бака.
- •27. Электронный парамагнитный резонанс. Радиоспектроскопия. Ядерный магнитный резонанс
- •28. Атомы во внешних электрических полях. Поляризуемость атомов и молекул. Эффект Штарка.
- •30. Поступательное, колебательное и вращательное движения молекул. По-лосатые спектры молекул. Колебательное и вращательное квантовые числа. Прави-ла отбора. Комбинационное рассеяние света.
- •31. Сверхтонкая структура спектральных линий. Состав и характеристики атомных ядер. Размеры атомных ядер. Спин атомного ядра.
- •32. Изотопы, изомеры, изотоны, изобары. Трансурановые элементы.
- •33. Масса и энергия связи ядра. Дефект массы. Удельная энергия связи. Ее зависимость от массового числа.
- •34. Модели атомного ядра. Капельная и оболочечная модели. Магические и дважды магические ядра.
- •35. Сильные взаимодействия. Ядерные силы. Характеристики ядерных сил. Природа ядерных сил.
- •36. Радиоактивность. Естественная и искусственная радиоактивность. Общий закон радиоактивного превращения. Постоянная распада. Период полураспада. Среднее время жизни радиоактивного ядра.
- •37. Альфа-распад радиоактивных ядер. Бета-распад. Спектр бета-частиц. Проблема массы нейтрино. Электронный захват (е-захват).
- •38. Гамма-излучение ядер. Внутренняя конверсия. Спонтанное деление тя-желых ядер. Протонная радиоактивность.
- •39. Активность радиоактивного вещества. Единицы измерения активности. Радиоактивные семейства.
- •40. Ядерные реакции. Энергия реакции. Составное ядро. Время пролета. Эф-фективное сечение реакции.
- •41. Деление атомных ядер под действием нейтронов. Цепная ядерная реак-ция. Критическая масса. Атомная бомба. Ядерный реактор.
- •42. Синтез легких ядер. Термоядерный и инерционный синтез. Проблемы управляемого термоядерного синтеза.
- •49. Систематика элементарных частиц. Кварковая модель адронов. Попытки обнаружения кварков.
- •Специфика законов микромира. Квантовая и классическая физика. Постоянная Планка, ее физический смысл, размерность.
42. Синтез легких ядер. Термоядерный и инерционный синтез. Проблемы управляемого термоядерного синтеза.
Термоядерные реакции
Ядерный синтез, т.е. слияние легких ядер в одно ядро, сопровождается, как и деление тяжелых ядер, выделением огромных количеств энергии. Поскольку для синтеза ядер необходимы очень высокие температуры, этот процесс называется термоядерной реакцией.
Чтобы преодолеть потенциальный барьер, обусловленный кулоновским отталкиванием, ядра с порядковыми номерами Z1 и Z2 должны обладать энергией
где rя - радиус действия ядерных сил, равный ~ 2·10-13 см. Даже для ядер с Z1 = Z2 = 1 эта энергия составляет
.
На долю каждого сталкивающегося ядра приходится 0,35 МэВ. Средней энергии теплового движения, равной 0,35 МэВ, соответствует температура порядка 2·109 К. Однако синтез легких ядер может протекать и при значительно меньших температурах. Дело в том, что из-за случайного распределения частиц по скоростям всегда имеется некоторое число ядер, энергия которых значительно превышает среднее значение. Кроме того, что особенно существенно, слияние ядер может произойти вследствие туннельного эффекта. Поэтому некоторые термоядерные реакции протекают с заметной интенсивностью уже при температурах порядка 107 К.
Особенно благоприятны условия для синтеза ядер дейтерия и трития, так как реакция между ними носит резонансный характер. Именно эти вещества образуют заряд водородной (или термоядерной) бомбы. Запалом в такой бомбе служит обычная атомная бомба, при взрыве которой возникает температура порядка 107 К. Реакция синтеза дейтрона (d) и ядра трития ( )
сопровождается выделением энергии, равной 17,6 МэВ, что составляет ~ 3,5 МэВ на нуклон. Для сравнения укажем, что деление ядра урана приводит к высвобождению 0,85 МэВ на нуклон.
До недавнего времени представлялось несомненным, что синтез ядер водорода в ядра гелия является источником энергии Солнца и звезд, температура в недрах которых достигает 107 – 108 К. Этот синтез может осуществляться двумя путями. При более низких температурах имеет место протонно-протонный цикл, протекающий следующим образом. Вначале происходит синтез двух протонов с образованием дейтрона, позитрона и нейтрино:
Образовавшийся дейтрон, сталкиваясь с протоном, объединяется с ним в ядро
:
.
Последнее звено цикла образует реакция
При более высоких
температурах большей вероятностью
обладает предложенный Г. Бете углеродный
(или углеродно-азотный) цикл, который
состоит из следующих звеньев:
Итогом углеродного цикла является исчезновение четырех протонов и образование одной α – частицы. Количество ядер углерода остается неизменным; эти ядра участвуют в реакции в роли катализатора.
В водородной бомбе термоядерная реакция носит неконтролируемый характер. Для осуществления управляемых термоядерных реакций необходимо создать и поддерживать в некотором объеме температуру порядка 108 К. При столь высокой температуре вещество представляет собой полностью ионизированную плазму. На пути осуществления управляемой термоядерной реакции стоят огромные трудности. Наряду с необходимостью получить чрезвычайно высокие температуры, возникает проблема удержания плазмы в заданном объеме. Соприкосновение плазмы со стенками сосуда приведет к ее остыванию. Кроме того, стенка из любого вещества при такой температуре немедленно испарится. В связи с этим для удержания плазмы в заданном объеме приходится использовать магнитное поле. Силы, действующие в этом поле на движущиеся заряженные частицы, заставляют их двигаться по траекториям, расположенным в ограниченной части пространства.
Осуществление управляемого термоядерного синтеза даст человечеству практически неисчерпаемый источник энергии. Поэтому работы по овладению управляемыми термоядерными реакциями ведутся во многих странах.