
- •1. Механ рук. Сонові види мех.. Руху
- •2. Переміщення, швидкість прискореня при поступальному русі тіла
- •3.Криволінійних рух. Тангец. І норм. Прискорення
- •4.Рух матеріальної точки по колу.Кутові переміщення, швидкість та прискорення
- •5.Інерційні системи відліку. Перший закон Ньютона
- •6.Поняття про силу. Другий закон Ньютона.
- •7.Сили в природі. Особливості деяких сил.
- •8. Імпульс тіла. Закон збереження імпульсу.
- •9. Рух системи матеріальних точок. Центр мас. Координати центра мас. Закони руху центра мас.
- •10. Механічна енергія та потужність
- •11. Кінетична енергія
- •12. Потенційні та не потенціальні сили. Потенційне енергія. Зв’язок сили з потенціальною енергією
- •13. Закон збереження повної механічної енергії
- •14. Тверде тіло як система матеріальних точок. Абсолютно тверде тіло. Поступальний та обертальних рух твердого тіла. Миттєві осі обертання.
- •15. Момент сили. Момент пари сил
- •16. Основне рівняння динаміки обертального руху.
- •17. Момент інерції. Теорема Штейнера. Вільні осі обертання.
- •19. Механічна робота та кінетична енергія обертального руху.
- •21. Рух тіла у в’язкому середовищі. Формула Стокса
- •22. Тиск в рідині та газі. Закон Паскаля. Закон Архімеда
- •23. Ідеальна рідина. Рівняння неперервності ідеальної рідини
- •24. Рівняння Бернулі та його наслідки.
- •27. Основні положення молекулярно-кінетичної теорії газів. Експерементальне підтвердження основних положень основ молекулярно- кінетичної теорії газів: дифузія та броунівський рух
- •28. Кількість речовини. Число Авогадро. Молярна маса речовини.
- •29.Ідеальний газ. Основне рівняння кінетичної теорії газів. Визначення швидкостей молекул.
- •30. Температура. Вимірювання температури. Абсолютна температура. Абсолютний нуль температур.
- •31. Рівняння Менделєєва — Клапейрона
- •32.Газові закони:
- •33. Розподіл енергії молекули за ступенями вільності. Теплоємність. Обрахунок кількості теплоти
- •34. Оборотні і необоротні процеси. Ентропія. Другий закон термодинаміки.
- •35. Колові процеси. Принцип дії теплової і холодильникової машин. Цикл Карно….
- •36. Електризація тіл.Електричні заряди. Властивості електричного заряду: два види зарядів, закон збереження заряду, дискретність заряду.
- •37. Взаємодія заряджених тіл. Закон Кулона
- •38. Електричне поле. Вектор напруженості електричного поля. Принцип суперпозиції полів…
- •39.Потік вектора напруженості. Теорема Остроградського – Ґаусcа
- •40. Робота сил електричного поля. Циркуляція вектора напруженості.
- •41. Потенціальний характер електричного поля. Напруженість як градієнт потенціалу
- •42. Електричне поле в діелектриках. Типи діелектриків. Поляризація діелектрика. Діелектричні матеріали
- •43. Провідники в електричному полі. Розподіл заряду в провіднику. Зв'язок між напруженістю поля в поверхні провідника й поверхневою густиною зарядів
- •44. Електроємність провідника. Конденсатори. Ємність конденсатора.
- •45.Енергія і густина енергії електричного поля.
- •46. Електричний струм. Сила струму та густина струму. Закон Ома для ділянки кола.
- •47. Опір провідність, їх залежність від температури..
- •49. Джерелос струму. Сторонні сили. Електрорушійна сила джерела струму. Закон Ома для повного кола.
- •50. Правила Кірхгофа для розгалужених кіл та їх застосування.
- •51. Робата і потужність постійного електричного струму. Теплова дія ….
- •52. Взаємодія електричних струмів
- •53.Закон Біо-Савара-Лапласа
- •54.Дія магнітного поля на провідник зі струмам закон Ампера.
- •55. Магнітне поле рухомого заряду сила Лоренца. Рух заряджених частинок у магнітному полі
- •56. Потік вектора магнітної індукції . Теорема Остроградського – Гауса для магнітного поля.
- •1.Потік вектора магнітної індукції
- •57.Циркуляція індукції магнітного поля.Закон повного струму
- •60. Електромагнітна індукція. Досліди Фарадея. Закон електромагнітної індукції. Правило Ленца.
- •61. Явище самоіндукції та взаємоіндукції. Індуктивність та кофіцієкт само індукції
- •62. Енергія і густина енергії магнітного поля
- •63. Рух тіла під дією пружинних і квазіупружних сил. Гармонісні коливання.
- •64. Рівняння руху найпростіших коливальних систем без тертя: пружинний, фізичний та математичний маятники. Власна частота коливань.
- •65. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі
- •67.Вимушені коливання. Явище резонансу. Поняття про автоколивальні системи.
- •68.Коливальний контур.Вільні гармонічні електромагнітні коливання.Власна частота коливань. Формула Томсона.
- •69. Затухаючі електромагнітні коливання. Збудження не затухаючих електромагнітних коливань автоколивальні системи
- •71. Коло змінного струму з опором, індуктивністю і ємністю. Векторні діаграми. Закон Ома для кола змінного струму. Резонанс напруг і струмів.
- •72. Робота і потужність зміного струму.
- •73.Будова та принцип дії трансформатора. Застосування трансформаторів у техніці. Проблема переносу та розподілу електроенергії на відстань.
60. Електромагнітна індукція. Досліди Фарадея. Закон електромагнітної індукції. Правило Ленца.
Електромагні́тна інду́кція — явище створення в просторi вихрового електричного поля змінним магнітним полем.
Явище електромагнітної індукції відкрив у 1831 році Майкл Фарадей. До того було відомо, що електричний струм у провіднику створює магнітне поле. Однак оберненого явища не спостерігалося. Постійне магнітне поле не створює електричного струму. Фарадей встановив, що струм виникає при зміні магнітного поля. Якщо підносити й віддаляти до рамки зпровідного матеріалу постійний магніт, то стрілка підключеного до рамки вольтметра відхилятиметься, детектуючи електричний струм. Ще краще це явище проявляється, якщо вставляти (виймати) магнітне осердя в котушку з намотаним провідником. Фарадей встановив кількісний закон електромагнітної індукції, описавши його рівнянням:
де — електрорушійна сила (ЕРС), яка виникає в котушці, що перебуває у змінному магнтіному полі, у вольтах N — кількість витків у котушці Φ — магнітний потік у веберах. Якщо в провіднику виникає електрорушійна сила, то відповідно, індукований в ньому струм буде визначатися за законом Ома формулою
де R — опір провідника. Такий струм називається індукційним струмом.
ДОСЛІДИ ФАРАДЕЯ Після відкриття у 1820 р. датським фізиком X. Ерстедом зв'язку магнітного поля з електричним струмом М. Фарадей записав у своєму науковому щоденнику програму досліджень коротким реченням: «Перетворити магнетизм на електрику». Після тривалих наукових пошуків він у 1831 р. одержав перші позитивні результати стосовно поставленого завдання: внаслідок взаємодії провідників із магнітним полем по них проходив електричний струм. Опишемо найважливіші досліди, які можна легко виконати на сучасному лабораторному обладнанні.
1. До клем гальванометра приєднаємо довгий провідник, частина якого закріплена в лапках штативів. Постійний підковоподібний магніт рухатиметься так, щоб його полюси спочатку наближалися до провідника, а потім — віддалялися від нього (Стрілка гальванометра при цьому відхилятиметься спочатку в один бік, а потім — у протилежний. 2. Закріпимо підковоподібний магніт у лапках штатива. Провідник, приєднаний до клем гальванометра, вводитимемо в міжполюсний простір, і виводитимемо з нього Стрілка гальванометра також: відхилятиметься спочатку в один, а потім — у протилежний бік.
3. Одну з котушок приєднаємо до клем гальванометра, а другу ввімкнемо в електричне коло із джерела постійного струму і вимикача. Замкнувши коло живлення другої котушки, почнемо наближати її до першої .Відхилення стріти гальванометра засвідчує, що в колі першої котушки з'явився електричний струм. Напрямок цього струму зміниться на протилежний, якщо другу котушку віддаляти від першої. Якщо котушки нерухомі, то стрілка гальванометра буде нерухомою. 4. Розмістимо другу котушку поблизу першої нерухомо і замкнемо коло її живлення (мал. 1.4). У момент замикання кола стрілка гальванометра відхилиться на деякий кут, а потім повернеться в початкове положення. Під час розмикання електричного кола другої котушки стрілка гальванометра відхилиться в протилежний бік і знову повернеться в початкове положення. 5. Замкнемо коло живлення другої котушки і діждемося, коли стрілка гальванометра повернеться в початкове положення. Після цього почнемо змінювати силу струму в колі живлення другої котушки переміщенням повзунка реостата (мал. 1.5).
Зі
збільшенням сили струму стрілка
гальванометра відхиляється в один бік,
зі зменшенням — у протилежний.
6.
Не змінюючи положення котушок (див. мал.
1.5) замкнемо коло живленння другої
котушки і зачекаємо, доки стрілка
гальванометра повернеться в початкове
положення. Після цього в обидві котушки
введемо сталевий стрижень.Стрілка
гальванометра, як і в попередніх дослідах,
відхилиться від нульової поділки, і
покаже наявність електричного струму
в першій котушці в момент введення
стрижня. Під час виймання стрижня з
котушок стрілка гальванометра
відхилятиметься в протилежний бік.Описані
досліди засвідчують, що за будь-якої
зміни магнітної індукції чи руху
замкнутого провідника в магнітному
полі з'являється електричний струм.
Електричний
струм, який виникає в замкнутому
провіднику в змінному магнітному полі,
називають індукційним. Його напрямок
залежить від характеру зміни магнітного
поля. Зі збільшенням магнітної індукції
він має один напрямок, зі зменшенням —
протилежний. Докладніше про способи
визначення напрямку індукційного струму
розповідається в наступних параграфах.
Явище
виникнення електричного струму в
замкнутому провіднику в разі зміни
магнітного поля є одним із проявів
електромагнітної індукції.
ЗАКОН
ЕЛЕКТРОМАГНІТНОЇ ІНДУКЦІЇ: Проаналізувавши
результати експериментальних досліджень
явища електромагнітної індукції, можна
знайти загальну форму вираження
особливостей цього явища, які відображають
суть закону електромагнітної індукції.
Закон електромагнітної індукції описує
явище електромагнітної індукції в
узагальненій формі. У
ньому підкреслюється, що в разі
електромагнітної індукції з'являється
ЕРС, яка і є причиною виникнення
електричного струму в замкнутих
провідниках при зміні магнітного потоку.
Найцікавіше, що зв'язок між цими двома
явищами виявився надзвичайно простим.
Це стало можливим завдяки введенню
такого узагальненого поняття, як
магнітний потік.
Явище електромагнітної індукції
підпорядковане закону електромагнітної
індукції Закон електромагнітної індукції
формулюється так: електрорушійна сила
індукції пропорційна швидкості зміни
магнітного потоку. У математичній
формі його можна записати формулою:
де
— електрорушійна сила індукції;
— швидкість зміни магнітного потоку;k
— коефіцієнт пропорційності. Якщо
величини, які входять у цю формулу,
виражені в одиницях Міжнародної системи
(СІ), то коефіцієнт пропорційності
дорівнює одиниці (k = 1). З урахуванням
правила Ленца закон електромагнітної
індукції записують так:
Правило Ленца — закон, за яким можна визначити напрям індукційного струму. Згідно з правилом Ленца індукційний струм, що виникає в замкнутому контурі, своїм магнітним полем протидіє зміні магнітного потоку, який збуджує даний струм. Формулювання: Індукційний струм у замкненому провіднику завжди має такий напрям, що створюваний цим струмом власний магнітний потік протидіє тим змінам зовнішнього магнітного потоку, які збуджують індукційний струм. Його встановив російський фізик Е. Х. Ленц 1833 року.