
- •1. Механ рук. Сонові види мех.. Руху
- •2. Переміщення, швидкість прискореня при поступальному русі тіла
- •3.Криволінійних рух. Тангец. І норм. Прискорення
- •4.Рух матеріальної точки по колу.Кутові переміщення, швидкість та прискорення
- •5.Інерційні системи відліку. Перший закон Ньютона
- •6.Поняття про силу. Другий закон Ньютона.
- •7.Сили в природі. Особливості деяких сил.
- •8. Імпульс тіла. Закон збереження імпульсу.
- •9. Рух системи матеріальних точок. Центр мас. Координати центра мас. Закони руху центра мас.
- •10. Механічна енергія та потужність
- •11. Кінетична енергія
- •12. Потенційні та не потенціальні сили. Потенційне енергія. Зв’язок сили з потенціальною енергією
- •13. Закон збереження повної механічної енергії
- •14. Тверде тіло як система матеріальних точок. Абсолютно тверде тіло. Поступальний та обертальних рух твердого тіла. Миттєві осі обертання.
- •15. Момент сили. Момент пари сил
- •16. Основне рівняння динаміки обертального руху.
- •17. Момент інерції. Теорема Штейнера. Вільні осі обертання.
- •19. Механічна робота та кінетична енергія обертального руху.
- •21. Рух тіла у в’язкому середовищі. Формула Стокса
- •22. Тиск в рідині та газі. Закон Паскаля. Закон Архімеда
- •23. Ідеальна рідина. Рівняння неперервності ідеальної рідини
- •24. Рівняння Бернулі та його наслідки.
- •27. Основні положення молекулярно-кінетичної теорії газів. Експерементальне підтвердження основних положень основ молекулярно- кінетичної теорії газів: дифузія та броунівський рух
- •28. Кількість речовини. Число Авогадро. Молярна маса речовини.
- •29.Ідеальний газ. Основне рівняння кінетичної теорії газів. Визначення швидкостей молекул.
- •30. Температура. Вимірювання температури. Абсолютна температура. Абсолютний нуль температур.
- •31. Рівняння Менделєєва — Клапейрона
- •32.Газові закони:
- •33. Розподіл енергії молекули за ступенями вільності. Теплоємність. Обрахунок кількості теплоти
- •34. Оборотні і необоротні процеси. Ентропія. Другий закон термодинаміки.
- •35. Колові процеси. Принцип дії теплової і холодильникової машин. Цикл Карно….
- •36. Електризація тіл.Електричні заряди. Властивості електричного заряду: два види зарядів, закон збереження заряду, дискретність заряду.
- •37. Взаємодія заряджених тіл. Закон Кулона
- •38. Електричне поле. Вектор напруженості електричного поля. Принцип суперпозиції полів…
- •39.Потік вектора напруженості. Теорема Остроградського – Ґаусcа
- •40. Робота сил електричного поля. Циркуляція вектора напруженості.
- •41. Потенціальний характер електричного поля. Напруженість як градієнт потенціалу
- •42. Електричне поле в діелектриках. Типи діелектриків. Поляризація діелектрика. Діелектричні матеріали
- •43. Провідники в електричному полі. Розподіл заряду в провіднику. Зв'язок між напруженістю поля в поверхні провідника й поверхневою густиною зарядів
- •44. Електроємність провідника. Конденсатори. Ємність конденсатора.
- •45.Енергія і густина енергії електричного поля.
- •46. Електричний струм. Сила струму та густина струму. Закон Ома для ділянки кола.
- •47. Опір провідність, їх залежність від температури..
- •49. Джерелос струму. Сторонні сили. Електрорушійна сила джерела струму. Закон Ома для повного кола.
- •50. Правила Кірхгофа для розгалужених кіл та їх застосування.
- •51. Робата і потужність постійного електричного струму. Теплова дія ….
- •52. Взаємодія електричних струмів
- •53.Закон Біо-Савара-Лапласа
- •54.Дія магнітного поля на провідник зі струмам закон Ампера.
- •55. Магнітне поле рухомого заряду сила Лоренца. Рух заряджених частинок у магнітному полі
- •56. Потік вектора магнітної індукції . Теорема Остроградського – Гауса для магнітного поля.
- •1.Потік вектора магнітної індукції
- •57.Циркуляція індукції магнітного поля.Закон повного струму
- •60. Електромагнітна індукція. Досліди Фарадея. Закон електромагнітної індукції. Правило Ленца.
- •61. Явище самоіндукції та взаємоіндукції. Індуктивність та кофіцієкт само індукції
- •62. Енергія і густина енергії магнітного поля
- •63. Рух тіла під дією пружинних і квазіупружних сил. Гармонісні коливання.
- •64. Рівняння руху найпростіших коливальних систем без тертя: пружинний, фізичний та математичний маятники. Власна частота коливань.
- •65. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі
- •67.Вимушені коливання. Явище резонансу. Поняття про автоколивальні системи.
- •68.Коливальний контур.Вільні гармонічні електромагнітні коливання.Власна частота коливань. Формула Томсона.
- •69. Затухаючі електромагнітні коливання. Збудження не затухаючих електромагнітних коливань автоколивальні системи
- •71. Коло змінного струму з опором, індуктивністю і ємністю. Векторні діаграми. Закон Ома для кола змінного струму. Резонанс напруг і струмів.
- •72. Робота і потужність зміного струму.
- •73.Будова та принцип дії трансформатора. Застосування трансформаторів у техніці. Проблема переносу та розподілу електроенергії на відстань.
39.Потік вектора напруженості. Теорема Остроградського – Ґаусcа
Основне завдання електростатики полягає в тому, щоб за заданим розподілом у просторі і величиною електричних зарядів знайти величину і напрямок вектора напруженості в кожній точці поля. Використання принципу суперпозиції для обрахунку електричних полів пов’язано із значними математичними труднощами. Значно простіший метод розрахунку полів ґрунтується на використанні теореми Остроградського – Ґаусcа. Нехай в однорідному електричному полі () проведена довільна площина dS. Одиничний вектор нормалі до площини утворює з вектором кут. Потоком вектора напруженості будемо називати величину або де – проекція вектора на напрямок вектора нормалі, а вектор. Повний потік вектора напруженості через довільну поверхню S буде Нехай навколо точкового заряду описана сферична поверхня радіусом , в центрі якої знаходиться цей заряд. Проекція вектора напруженості Еn на напрям нормалі буде: тоді потік вектора напруженості через замкнену сферичну поверхню буде:Це рівняння називається теоремою Остроградського – Ґаусса. Воно справедливе не лише для сферичних поверхонь, але і для будь-яких замкнених поверхонь, і для будь-якої кількості зарядів, що нею охоплюються. В загальному вигляді ця теорема записується так: ` Потік вектора напруженості електричного поля через замкнену поверхню дорівнює алгебраїчній сумі електричних зарядів, які охоплює ця поверхня, поділеній на електричну сталу. Потік вектора напруженості електричного поля через довільну замкнену поверхню, що не охоплює заряду, дорівнює нулю. Знак потоку залежить від вибору напрямку нормалі. Для замкнених поверхонь нормаль, яка виходить назовні, приймається за додатну. Тоді там, де вектор напрямлений назовні, та додатні, а коли входить всередину поверхні, та – від’ємні
40. Робота сил електричного поля. Циркуляція вектора напруженості.
Сили, які діють в електричному полі, – центральні. Поле центральних сил – потенціальне. Під час переміщення тіла із зарядом q на відстань S у електричному полі напруженістю Е під дією сили F виконується робота:? – кут між векторами .Робота сил електричного поля при переміщенні заряду не залежить від форми шляху, а залежить тільки від взаємного розміщення початкової і кінцевої точок траєкторії.Потенціальна енергія заряду в однорідному електричному полі зв’язана з напруженістю поля співвідношенням:,де х – координати заряду, що W = 0 при х = 0.Тоді робота:Величину, яка визначається відношенням потенціальної енергії заряду до величини цього заряду, називають потенціалом.Потенціал чисельно дорівнює роботі кулонівських сил з переміщенням одиничного позитивного заряду із даної точки простору в нескінченність:Потенціал поля – величина скалярна. Під час переміщення одиничного заряду з точки А в точку В виконується робота: - різниця потенціалів між точками А і В. Вимірюють в СІ [?] = Дж/Кл = В. Поверхні, потенціали всіх точок яких однакові, називають еквіпотенціальними поверхнями. В кожній точці еквіпотенціальної поверхні вектор напруженості перпендикулярний до неї. Якщо електричне поле утворене кількома зарядами, то потенціал, в якій–небудь точці поля дорівнює алгебраїчній сумі потенціалів, створених кожним зарядом :Потенціал поля точкового заряду q на відстані r від нього: