
- •1. Механ рук. Сонові види мех.. Руху
- •2. Переміщення, швидкість прискореня при поступальному русі тіла
- •3.Криволінійних рух. Тангец. І норм. Прискорення
- •4.Рух матеріальної точки по колу.Кутові переміщення, швидкість та прискорення
- •5.Інерційні системи відліку. Перший закон Ньютона
- •6.Поняття про силу. Другий закон Ньютона.
- •7.Сили в природі. Особливості деяких сил.
- •8. Імпульс тіла. Закон збереження імпульсу.
- •9. Рух системи матеріальних точок. Центр мас. Координати центра мас. Закони руху центра мас.
- •10. Механічна енергія та потужність
- •11. Кінетична енергія
- •12. Потенційні та не потенціальні сили. Потенційне енергія. Зв’язок сили з потенціальною енергією
- •13. Закон збереження повної механічної енергії
- •14. Тверде тіло як система матеріальних точок. Абсолютно тверде тіло. Поступальний та обертальних рух твердого тіла. Миттєві осі обертання.
- •15. Момент сили. Момент пари сил
- •16. Основне рівняння динаміки обертального руху.
- •17. Момент інерції. Теорема Штейнера. Вільні осі обертання.
- •19. Механічна робота та кінетична енергія обертального руху.
- •21. Рух тіла у в’язкому середовищі. Формула Стокса
- •22. Тиск в рідині та газі. Закон Паскаля. Закон Архімеда
- •23. Ідеальна рідина. Рівняння неперервності ідеальної рідини
- •24. Рівняння Бернулі та його наслідки.
- •27. Основні положення молекулярно-кінетичної теорії газів. Експерементальне підтвердження основних положень основ молекулярно- кінетичної теорії газів: дифузія та броунівський рух
- •28. Кількість речовини. Число Авогадро. Молярна маса речовини.
- •29.Ідеальний газ. Основне рівняння кінетичної теорії газів. Визначення швидкостей молекул.
- •30. Температура. Вимірювання температури. Абсолютна температура. Абсолютний нуль температур.
- •31. Рівняння Менделєєва — Клапейрона
- •32.Газові закони:
- •33. Розподіл енергії молекули за ступенями вільності. Теплоємність. Обрахунок кількості теплоти
- •34. Оборотні і необоротні процеси. Ентропія. Другий закон термодинаміки.
- •35. Колові процеси. Принцип дії теплової і холодильникової машин. Цикл Карно….
- •36. Електризація тіл.Електричні заряди. Властивості електричного заряду: два види зарядів, закон збереження заряду, дискретність заряду.
- •37. Взаємодія заряджених тіл. Закон Кулона
- •38. Електричне поле. Вектор напруженості електричного поля. Принцип суперпозиції полів…
- •39.Потік вектора напруженості. Теорема Остроградського – Ґаусcа
- •40. Робота сил електричного поля. Циркуляція вектора напруженості.
- •41. Потенціальний характер електричного поля. Напруженість як градієнт потенціалу
- •42. Електричне поле в діелектриках. Типи діелектриків. Поляризація діелектрика. Діелектричні матеріали
- •43. Провідники в електричному полі. Розподіл заряду в провіднику. Зв'язок між напруженістю поля в поверхні провідника й поверхневою густиною зарядів
- •44. Електроємність провідника. Конденсатори. Ємність конденсатора.
- •45.Енергія і густина енергії електричного поля.
- •46. Електричний струм. Сила струму та густина струму. Закон Ома для ділянки кола.
- •47. Опір провідність, їх залежність від температури..
- •49. Джерелос струму. Сторонні сили. Електрорушійна сила джерела струму. Закон Ома для повного кола.
- •50. Правила Кірхгофа для розгалужених кіл та їх застосування.
- •51. Робата і потужність постійного електричного струму. Теплова дія ….
- •52. Взаємодія електричних струмів
- •53.Закон Біо-Савара-Лапласа
- •54.Дія магнітного поля на провідник зі струмам закон Ампера.
- •55. Магнітне поле рухомого заряду сила Лоренца. Рух заряджених частинок у магнітному полі
- •56. Потік вектора магнітної індукції . Теорема Остроградського – Гауса для магнітного поля.
- •1.Потік вектора магнітної індукції
- •57.Циркуляція індукції магнітного поля.Закон повного струму
- •60. Електромагнітна індукція. Досліди Фарадея. Закон електромагнітної індукції. Правило Ленца.
- •61. Явище самоіндукції та взаємоіндукції. Індуктивність та кофіцієкт само індукції
- •62. Енергія і густина енергії магнітного поля
- •63. Рух тіла під дією пружинних і квазіупружних сил. Гармонісні коливання.
- •64. Рівняння руху найпростіших коливальних систем без тертя: пружинний, фізичний та математичний маятники. Власна частота коливань.
- •65. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі
- •67.Вимушені коливання. Явище резонансу. Поняття про автоколивальні системи.
- •68.Коливальний контур.Вільні гармонічні електромагнітні коливання.Власна частота коливань. Формула Томсона.
- •69. Затухаючі електромагнітні коливання. Збудження не затухаючих електромагнітних коливань автоколивальні системи
- •71. Коло змінного струму з опором, індуктивністю і ємністю. Векторні діаграми. Закон Ома для кола змінного струму. Резонанс напруг і струмів.
- •72. Робота і потужність зміного струму.
- •73.Будова та принцип дії трансформатора. Застосування трансформаторів у техніці. Проблема переносу та розподілу електроенергії на відстань.
27. Основні положення молекулярно-кінетичної теорії газів. Експерементальне підтвердження основних положень основ молекулярно- кінетичної теорії газів: дифузія та броунівський рух
Усі тіла складаються з атомів. Атомами називають найменші неподільні частинки речовини. Усі атоми однієї простої хімічної речовини цілковито однакові. Атоми перебувають у безперервному хаотичному русі. Між атомами діють сили притягання. На дуже малих відстанях між атомами діють сили відштовхування. Найменші частинки речовини, що, складаються з двох і більшої кількості атомів, називають молекулами. Рух атомів і молекул, їхні взаємодії описують закони механіки. Останнє припущення дозволяє використати основні закони механіки для з'ясування властивостей тіл, що складаються з великої кількості частинок, які рухаються хаотично.Експериментальне обґрунтування молекулярно-кінетичної теорії Вирішальним доказом істинності молекулярно-кінетичної теорії є досліди, у яких безпосередньо виявляються окремі молекули або атоми й вимірюються швидкості їхнього руху. Броунівський рух - Безладний рух дрібних твердих частинок, що перебувають у рідині або газі, уперше виявив 1827 року за допомогою мікроскопа англійський ботанік Р. Броун. Це явище назвали броунівським рухом. Броунівський рух дрібних частинок молекулярно-кінетична теорія пояснила як результат випадкових ударів молекул речовини, що рухаються безладно. У 1905 році А. Ейнштейн, використовуючи молекулярно-кінетичну теорію, розробив теорію броунівського руху. Він показав, що під час хаотичного руху броунівської частинки середній квадрат зміщення частинки за інтервал часу має бути прямо пропорційний до цього інтервалу часу й температури речовини.Французький фізик Жан Перрен у 1908 -1911 роках здійснив серію експериментів для вивчення броунівського руху.Дифузія - це взаємне проникнення дотичних речовин друг у друга внаслідок теплового руху часток речовини дифузія відбувається в напрямку падіння концентрації речовини й веде до рівномірного розподілу речовини по всьому займаному їм обсягу (до вирівнювання хімічного потенціалу речовини). Дифузія має місце в газах, рідинах і твердих тілах, причому дифундувати можуть як перебувають у них частки сторонніх речовин, так і власні частки (самодифузія). Дифузія великих часток, зважених у газі або рідині (наприклад, часток диму або суспензії), здійснюється завдяки їх броунівському руху. Надалі, якщо спеціально не обговорено, мається на увазі молекулярна дифузія.Найбільше швидко дифузія відбувається в газах, повільніше в рідинах, ще повільніше у твердих тілах, що обумовлено характером теплового руху часток у цих середовищах. На наступному відео можно побачити, як зміщуються дві рідини протягом часу. До дифузії відносять і розчинення речовин
28. Кількість речовини. Число Авогадро. Молярна маса речовини.
Кі́лькість речови́ни — фізична величина, що характеризує кількість специфічних однотипних структурних одиниць-елементів (частинок), з котрих складається речовина. Під структурними одиницями розуміються будь-які частинки, з яких складається речовина (атоми, молекули, іони, електрони,протони, нейтрони або будь-які інші частинки). В міжнародній системі одиниць СІ кількість речовини поряд з масою (яка теж фактично корелює з кількістю частинок) належить до основних одиниць окремого типу[2]. Таким чином, кількість речовини в системі СІ не може бути виражена через інші базові одиниці. Одиниця кількості речовини називається моль. Моль дорівнює кількості речовини системи, яка містить стільки ж частинок, скільки міститься атомів у 0,012 кг вуглецю-12. Число Авогадро — кількість структурних одиниць (атомів, молекул або інших) в одному молі[1]. Назване так на честь Амедео Авогадро, автора закона Авогдаро. Число Авогадро позначають NA, воно є однією з найважливіших сталих у фізиці і хімії. Стала Авогадро дорівнює[2] NA = 6.02214129·1023 ± 0.00000027·1023 моль-1 Число Авогадро визначене близько 20 незалежними один від одного методами. Результати цих вимірювань взагалі відповідають один одному, що є яскравим свідченням реальності молекул і молекулярної будови речовини. Знаючи число Авогадро й об'єм 1 грам-молекули (молярний об'єм), можна визначити кількість молекул в одиниці об'єму, тобто число Лошмідта. Молярна маса — маса 1 моля речовини, тобто такої кількості структурних одиниць цієї речовини (атомів чи молекул), що міститься в 0,012 кг вуглецю 12С. Зв'язок між молярною масою та атомною масою хімічного елемента - атомні маси, наведені в Періодичній системі елементів, можна інтерпретувати як масу одного атома в атомних одиницях маси (а. о. м.) або як молярну масу елемента в грамах (г/моль), тобто вони рівні чисельно, але мають різні розмірності. Молярна маса використовується в стехіометричних розрахунках. Причиною того, що молярна маса вуглецю не рівна строго 12 г/моль, є те, що в природі вуглець зустрічається в кількох ізотопах, із них два стабільні — 12С (98,93 %) і 13С (1,07 %) - та один радіоактивний 14С (β-радіоактивний, період напіврозпаду 5700 років), зосереджений в атмосфері та верхній частині земної кори. Ізотоп 14С утворюється постійно в стратосфері як результат взаємодії нейтронів космічного випромінювання з ядрами азоту. Молярні маси хімічних сполук можна знайти шляхом додавання молярних мас хімічних елементів (з урахуванням кратності),що входять до складу молекул цих сполук. Наприклад, молярна маса газу водню, до складу молекули якого входять два атоми, рівна подвоєній молярній масі водню як хімічного елементу.