
- •1.Форма и размеры земли.
- •2.Физические свойства и химический состав Земли.
- •3. Определение геотермической ступени и градиента.
- •4. Что такое кларк.
- •5. Каковы средние содержания химических элементов в земной коре.
- •6. В каком виде в природе встречаются минералы.
- •7. Что такое сингония, перечислите их.
- •8. Что относится к диагностическим свойствам минералов.
- •9. Шкала Мооса.
- •10. В основе современной классификации минералов лежат химические и структурные признаки.
- •11. Что характерно для минералов класса окислов, сульфидов, сульфатов, карбонатов, галоидов , силикатов.
- •12. Что положено в основу классификации горных пород.
- •13. Магматизм, формы происхождения и морфология формирующихся при этом тел горных пород.
- •14. Классификация магматических горных пород.
- •15. Интрузивные и эффузивные породы, их отличия.
- •16. Выветривание горных пород,их типы механизм проявления и продукты выветривания.
- •17. Геологическая деятельность ветра.
- •18. Разрушительная и созидательная роль поверхностных и текучих вод.
- •19. Разрушительная и созидательная роль рек, озер, морей и их отложения.
- •20. Трансгрессивный и регрессивный циклы накопления горных пород,механизм образования.
- •21. Геологическая деятельность ледников.
- •22. Подземные воды, их виды способы образования, химический состав и их геологическая деятельность.
- •23. Закон дарси.
- •24. Классификация пород по степени их обводненности.
- •25. Классификация осадочных горных пород.
- •26. Определение притока воды в горные выработки.
- •27. Какие процессы приводят к образованию метаморфических пород.
- •28. Каковы виды проявления тектонических движений земной коры.
- •29. Складки и их виды, и элементы, изобразите их.
- •30. Дизъюнктивные нарушения, их типы и элементы.
- •32. Генетическая классификация месторождений полезных ископаемых.
- •33. Классификация магматогенных месторождений полезных ископаемых.
- •34.Классификация седиментогенных месторождений полезных ископаемых и условия их образования, полезные и вредные компоненты.
- •35.Классификация метаморфогенных месторождений полезных ископаемых, условия их образования и промышленное значение.
- •36. Принципы разведки.
- •37. Технические средства разведки.
- •38. Способы оконтуривания месторождений полезных ископаемых.
- •39. Виды разведочной сети и способы их применения.
- •40. Стадии разведочных работ.
- •41. Виды опробования.
- •42. Способы отбора проб.
- •43. Схема обработки проб.
- •44. Подготовка исходных данных для подсчета запасов.
- •45. Способы подсчета запасов.
- •46. Что такое кондиции.
- •47. Условия образования магматических месторождений.
- •48. Условия образования пегматитовых месторождений.
- •49. Условия образования карбонатитовых месторождений
- •50. Условия образования альбитит-грейзеновых месторождений.
- •52. Условия образования гидротермальных месторождений.
- •53. Условие образования колчеданных месторождений.
- •54. Условие образования месторождений кор выветривания
- •55. Условия образования месторождения зоны окисления сульфидов.
- •56. Условия образования россыпных месторождений.
- •57. Условия образования осадочных месторождений.
- •58. Условия образования вулканогенно-осадочных месторождений.
- •59. Условия образования метаморфических месторождений.
- •60. Условия образования метаморфизованных месторождений.
- •61. Штуфной способ отбора проб.
- •62. Точечный способ отбора проб.
- •63. Бороздовый способ отбора проб.
- •64. Шпуровой способ отбора проб.
- •66. Валовый способ отбора проб.
- •67. Горстьевой способ отбора проб.
- •68. Керновый способ отбора проб.
9. Шкала Мооса.
Шкала Мооса (минералогическая шкала твёрдости) — набор эталонных минералов для определения относительной твёрдости методом царапания. В качестве эталонов приняты 10 минералов, расположенных в порядке возрастающей твёрдости.
Предложена в 1811 году немецким минералогом Фридрихом Моосом.
Значения шкалы от 1 до 10 соответствуют 10 достаточно распространённым минералам от талька до алмаза. Твёрдость минерала измеряется путём поиска самого твёрдого эталонного минерала, который он может поцарапать; и/или самого мягкого эталонного минерала, который царапает данный минерал. Например, если минерал царапается апатитом, но не флюоритом, то его твёрдость находится в диапазоне от 4 до 5.
Предназначена для грубой сравнительной оценки твёрдости материалов по системе мягче-твёрже. Испытываемый материал либо царапает эталон и его твёрдость по шкале Мооса выше, либо царапается эталоном и его твёрдость ниже эталона. Таким образом, шкала Мооса информирует только об относительной твёрдости минералов. Например, корунд (9) в 2 раза твёрже топаза (8), но при этом почти в 4 раза менее твёрдый, чем алмаз (10).
10. В основе современной классификации минералов лежат химические и структурные признаки.
Все известные минералы группируются в несколько классов, главнейшими из которых являются: 1) самородные элементы и интерметаллические соединения, 2) сульфиды и их аналоги, 3) галогениды, 4) оксиды и гидроксиды, 5) соли кислородных кислот. В пределах классов минералов выделяют подклассы, а внутри последних - группы. Краткое описание главных классов и подклассов минералов приведено ниже. ВОПРОС 6
11. Что характерно для минералов класса окислов, сульфидов, сульфатов, карбонатов, галоидов , силикатов.
Окислы-К классу окислы относят минералы, представляющие собой соединения металла с кислородом. Гидроокислы – содержат гидроксильную группу (OH). После силикатов это, пожалуй, самая многочисленная и представительная группа минералов.
Сульфиды — природные сернистые соединения металлов и некоторых неметаллов. В химическом отношении рассматриваются как соли сероводородной кислоты H2S. Ряд элементов образует с серой полисульфиды, являющиеся солями полисернистой кислоты H2Sx. Главнейшие элементы, образующие сульфиды — Fe, Zn, Cu. Характерны следующие общие физические свойства: металлический блеск, высокая и средняя отражающая способность, сравнительно низкая твёрдость и большой удельный вес. К этому классу относятся около 500 минеральных видов, главным образом сернистых соединений металлов и полуметаллов. Они имеют большое промышленное значение; являются главной рудой на медь, цинк, свинец, ртуть, и другие цветные металлы, а пирит (FeS2) служит сырьем для получения серного ангидрида и производства серной кислоты. Обратите внимание - черные металлы (железо, марганец, хром) не извлекаются, избыток серы мешает этому.
Cульфаты Так называются минералы, которые образовываются в результате осаждения солей серной кислоты, а также при окислении сульфидов — минералов, состоящих из соединений серы с металлами. В первом случае залежи и месторождения сульфатов формируются в условиях жаркого сухого климата в лагунах и озерах.(гипс)
Карбонаты — минералы, соли угольной кислоты H2CO3. Большая часть карбонатов бесцветна; содержат также сильные хромофорные ионы Fe, Mn, Cu, окрашены в бурые, розовые, жёлтые, зелёные и др. цвета. Твёрдость 3—5. Удельный вес от 1,5 до 8,1 (карбонаты с Bi). Для них очень характерно высокое двупреломление, обусловленное плоской формой треугольных радикалов [CO3]2− и параллельным расположением последних.(доломит) К кристаллам карбонатов относятся соли угольной кислоты, чаще всего соли кальция, магния, натрия, меди и др. Всего в этом классе известно около 100 минералов. Некоторые из них очень широко распространены в природе, например, кальцит и доломит, которые используют в производстве цемента. Прозрачные кристаллы кальцита (исландский шпат) применяют в оптике. Железистый карбонат – сидерит – добывают как руду на получение качественной стали. Малахит – водный карбонат – является ценным поделочным камнем.
ГАЛОИДЫ .К группе галоидов относятся фтористые, хлористые, бромистые и йодистые соединения, анионами в которых являются фтор, хлор, бром и иод соответственно. Для галоидных соединений характерна ионная связь; большинство из них кристаллизуется в кубической сингонии. Галоиды не обладают ни высокой твердостью, ни высокой плотностью. Наиболее популярный у коллекционеров минерал этой группы — флюорит. К типу галоидных соединений относится около 100 минералов. Их роль как породообразующих минералов невелика, но они важны в общегеологическом и практическом отношении. Наиболее распространены из минералов этого класса хлористые соединения.
Силикаты природные (от лат. Silex — кремень), класс наиболее распространённых минералов; природные химические соединения с комплексным кремнекислородным радикалом. С. Слагают более 75% земной коры (а вместе с кварцем около 87%) и более 95% изверженных горных пород. С. Включают около 500 минеральных видов, в том числе важнейшие породообразующие — полевые шпаты, пироксены, амфиболы, слюды и др. самый обширный класс минералов. Общее число минеральных видов силикатов около 800. По распространенности на долю силикатов приходится более 75% от всех минералов литосферы. Это объясняется тем, что силикаты – важнейшие породообразующие минералы, из которых сложена основная масса горных пород.