Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
оинх.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
755.63 Кб
Скачать

Нахождение в природе

Никель довольно распространён в природе — его содержание в земной коре составляет ок. 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8 %). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2 кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 — 0,41 % Ni. Он изоморфно замещает железо и магний. Небольшая часть никеля присутствует в виде сульфидов. Никель проявляет сидерофильные и халькофильные свойства. При повышенном содержании в магме серы возникают сульфиды никеля вместе с медью, кобальтом, железом и платиноидами. В гидротермальном процессе совместно с кобальтом, мышьяком и серой и иногда с висмутом, ураном и серебром, никель образует повышенные концентрации в виде арсенидов и сульфидов никеля. Никель обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах.

  • никелин (красный никелевый колчедан, купферникель) NiAs

  • хлоантит (белый никелевый колчедан) (Ni, Co, Fe)As2

  • гарниерит (Mg, Ni)6(Si4O11)(OH)6*H2O и другие силикаты

  • магнитный колчедан (Fe, Ni, Cu)S

  • мышьяково-никелевый блеск (герсдорфит) NiAsS,

  • пентландит (Fe,Ni)9S8

В растениях в среднем 5·10−5 весовых процентов никеля, в морских животных — 1,6·10−4, в наземных — 1·10−6, в человеческом организме — 1…2·10−6. О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы — «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.

Месторождения никелевых руд

Основная статья: Никелевые руды

Основные месторождения никелевых руд находятся в Канаде, России (Мурманская область, Норильский район, Урал, Воронежская область[3]), Кубе, ЮАР, Новой Каледонии и на Украине[4].

Природные изотопы никеля

Основная статья: Изотопы никеля

Природный никель содержит 5 стабильных изотопов: 58Ni (68.27 %), 60Ni (26.10 %), 61Ni (1.13 %), 62Ni (3.59 %), 64Ni (0.91 %). Существуют также искусственно созданные изотопы никеля, самые стабильные из которых — 59Ni (период полураспада 100 тысяч лет), 63Ni (100 лет) и 56Ni (6 суток).

Получение

Общие запасы никеля в рудах на начало 1998 г. оцениваются в количестве 135 млн т., в том числе достоверные — 49 млн.т. Основные руды никеля — никелин (купферникель) NiAs, миллерит NiS, пентландит (FeNi)9S8 — содержат также мышьяк, железо и серу; в магматическом пирротине также встречаются включения пентландита. Другие руды, из которых тоже добывают Ni, содержат примеси Co, Cu, Fe и Mg. Иногда никель является основным продуктом процесса рафинирования, но чаще его получают как побочный продукт в технологиях других металлов. Из достоверных запасов, по разным данным, от 40 до 66 % никеля находится в «окисленных никелевых рудах» (ОНР), 33 % — в сульфидных, 0,7 % — в прочих. По состоянию на 1997 г. доля никеля, произведённого переработкой ОНР, составила порядка 40 % от общемирового объёма производства. В промышленных условиях ОНР делят на два типа: магнезиальные и железистые.

Тугоплавкие магнезиальные руды, как правило, подвергают электроплавке на ферроникель (5-50 % Ni+Co, в зависимости от состава сырья и технологических особенностей).

Наиболее железистые — латеритовые руды перерабатывают гидрометаллургическими методами с применением аммиачно-карбонатного выщелачивания или сернокислотного автоклавного выщелачивания. В зависимости от состава сырья и применяемых технологических схем конечными продуктами этих технологий являются: закись никеля (76-90 % Ni), синтер (89 % Ni), сульфидные концентраты различного состава, а также металлические никель электролитный, никелевые порошки и кобальт.

Менее железистые — нонтронитовые руды плавят на штейн. На предприятиях, работающих по полному циклу, дальнейшая схема переработки включает конвертирование, обжиг файнштейна, электроплавку закиси никеля с получением металлического никеля. Попутно извлекаемый кобальт выпускают в виде металла и/или солей.[5] Ещё один источник никеля: в золе углей Южного Уэльса в Англии — до 78 кг никеля на тонну. Повышенное содержание никеля в некоторых каменных углях, пефтях, сланцах говорит о возможности концентрации никеля ископаемым органическим веществом. Причины этого явления пока не выяснены.

«Никель долгое время не могли получить в пластичном виде вследствие того, что он всегда имеет небольшую примесь серы в форме сульфида никеля, расположенного тонкими, хрупкими прослойками на границах металла. Добавление к расплавленному никелю небольшого количества магния переводит серу в форму соединения с магнием, которое выделяется в виде зерен, не нарушая пластичности металла.»[6]

Основную массу никеля получают из гарниерита и магнитного колчедана.

  1. Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5—8 % Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.

  2. Карбонильный способ (метод Монда). Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель [Ni(CO)4], термическим разложением которого выделяют особо чистый металл.

  3. Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al2O3

25.Комплексные соединения железа, кобальта, никеля (+2,+3).

У элементов триады железа ярко проявляется способность d-элементов образовывать комплексные соединения.

Известны катионные аквакомплексы [Э(H2O)6]2+ и [Э(H2O)6]3+, аммиачные комплексы [Э(NH3)6]2+ и [Э(NH3)6]3+. Устойчивость аммиачных комплексов увеличивается в ряду Fe – Co – Ni. [Fe(NH3)6]2+ и [Co(NH3)6]2+ устойчивы только в твердой фазе и насыщенном водном растворе аммиака, аммиачный комплекс [Ni(NH3)6]2+ в водном растворе устойчив. Аммиачный комплекс железа (III) не устойчив, никеля (III) – не существует, а [Co(NH3)6]2+ – устойчив.

Многочисленны анионные комплексы элементов триады железа. Характерны галогенидные M+2+Г3], M+22+Г4], M+32+Г6] и др., роданидные M+22+(CNS)4], M+42+(CNS)6], оксалатные M+22+(C2O4)2], M+33+(C2O4)3] комплексы. Особенно устойчивы цианидные комплексы, например: K3[Fe(CN)6] и K4[Fe(CN)6], которые используются в аналитической химии для обнаружения ионов Fe2+ и Fe3+.

Элементы триады железа образуют большое количество комплексных соединений с органическими лигандами, например: диметилглиоксимат никеля – реактив Чугаева и гемоглобин – внутрикомплексное соединение железа.