
- •1. Общие закономерности изменения структуры атомов элементов и влияние ее на физико-химические свойства.
- •2.Элементы подгруппы бора. Общая характеристика физических и химических свойств. Бороводороды. Борные кислоты и их свойства. Применение бора и его соединений.
- •Токсичность и огнеопасность
- •Водные растворы борной кислоты являются смесью полиборных кислот общей формулы н3m-2nВmО3m-n. Свойства
- •Получение
- •Физические свойства
- •Изотопы бора
- •Химические свойства
- •Применение Элементарный бор
- •Соединения бора
- •Бороводороды и борорганические соединения
- •Боразон и его гексагидрид
- •Биологическая роль
- •3.Алюминий. Отношение к элементарным окислителям, щелочам и кислотам, к воде. Соединения алюминия. Применение алюминия и его соединений.
- •Получение
- •Физические свойства
- •Нахождение в природе Распространённость
- •Природные соединения алюминия
- •Изотопы алюминия
- •Химические свойства
- •Применение
- •В качестве восстановителя
- •Сплавы на основе алюминия
- •Алюминий как добавка в другие сплавы
- •4.Углерод. Валентные состояния атома углерода. Аллотропные модификации углерода. Применение углерода. Кислородные соединения углерода. Угольная кислота, её соли.
- •Применение
- •5.Соединения углерода с галогенами, азотом, серой. Синильная кислота. Цианиды, тиоцианиды. Применение соединений углерода.
- •Физиологические
- •Действие на нервную систему
- •Действие на дыхательную систему
- •Действие на сердечно-сосудистую систему
- •Изменения в системе крови
- •Получение
- •Применение в химическом производстве
- •Как отравляющее веществo
- •Биологические свойства
- •Тиоцианаты (тиоцианиды, роданиды, сульфоцианиды) — соли роданистоводородной (тиоциановой) кислоты. Содержат ион scn−. Физико-химические свойства
- •6.Кремний.Оксиды кремния. Кремниевые кислоты, их соли. Применение кремния и его соединений.
- •7.Краткая характеристика простых веществ и соединений германия, олова, свинца. Их применение.
- •Формы нахождения
- •Твёрдая фаза. Минералы
- •Собственно минеральные формы Самородные элементы, сплавы и интерметаллические соединения
- •Окисные соединения олова
- •Сульфидные соединения олова
- •Коллоидная форма
- •Формы нахождения олова в жидкой фазе
- •Промышленные типы месторождений олова
- •Получение
- •Химические свойства
- •Основные соединения свинца
- •Галогениды свинца
- •Халькогениды свинца
- •Оксиды свинца
- •Соли свинца
- •Изотопный состав
- •Применение
- •В медицине
- •В геологии
- •Свойства элементов подгруппы азота и простых веществ
- •Физические и физико-химические свойства
- •Химические свойства
- •Нитраты
- •Промышленное производство, применение и действие на организм
- •Производство азотной кислоты
- •Применение
- •10.Фосфор. Физические и химические свойства. Оксиды фосфора. Соединения фосфора с водородом и галогенами. Кислоты фосфора. Применение фосфора. Оксиды фосфора ( 5) и фосфорная кислота.
- •Физические свойства
- •Белый фосфор
- •Жёлтый фосфор
- •Красный фосфор
- •Чёрный фосфор
- •Металлический фосфор
- •Свойства
- •Получение
- •Применение
- •146. Соединения фосфора с водородом и галогенами.
- •Фосфорные кислоты
- •11.Сера. Физические и химические свойства. Сероводород, сульфиды. Условия образования сульфидов. Сульфаны и полисульфаны.
- •Физические свойства
- •Физические свойства
- •Химические свойства
- •Сульфиды
- •Получение
- •Соединения, генетически связанные с сероводородом
- •Применение
- •Свойства
- •Получение
- •Применение
- •12.Оксиды серы. Серная кислота и их соли. Политионовые кислоты. Свойства солей серных кислот и их применение.
- •Химические свойства
- •Физические и физико-химические свойства
- •Химические свойства
- •Применение
- •Номенклатура
- •Получение и свойства
- •13.Галогены. Общая характеристик и применение. Водородные соединения, их свойства и применение.
- •Химические свойства галогенов
- •14.Кислородосодержащие кислоты хлора и брома.
- •Номенклатура
- •Общие методы получения кислот
- •Применение
- •16.Общая характеристика подгруппы хрома. Нахождение в природе, получение, применение.
- •Физические свойства
- •Химические свойства Характерные степени окисления
- •Простое вещество
- •Применение
- •Получение
- •Химические свойства
- •Применение
- •Получение
- •Физические свойства
- •Химические свойства
- •Применение
- •Физические свойства
- •Химические свойства
- •Применение
- •Металлический вольфрам
- •Соединения вольфрама
- •Другие сферы применения
- •18.Подгруппа марганца. Нахождение в природе, получение, применение. Химические свойства: отношение к элементарным окислителям, кислотам, щелочам и воде.
- •Получение
- •Физические свойства
- •Химические свойства
- •Применение в промышленности
- •Определение методами химического анализа
- •20.Марганцевые кислоты, их соли и применение.
- •21.Семейство железа. Внешние соединения, характеристика их свойств и применение.
- •Получение
- •Физические свойства
- •Химические свойства Характерные степени окисления
- •Свойства простого вещества
- •Применение
- •22.Сплавы на основе железа.
- •Соединения железа (II)
- •Соединения железа (III)
- •Соединения железа (VI)
- •Соединения железа VII и VIII
- •Другие соединения
- •Применение
- •Физические свойства
- •Химические свойства
- •Нахождение в природе
- •Месторождения никелевых руд
- •Природные изотопы никеля
- •Получение
Применение
Легирование кобальтом стали повышает её жаропрочность, улучшает механические свойства. Из сплавов с применением кобальта создают обрабатывающий инструмент: свёрла, резцы, и т. п.
Магнитные свойства сплавов кобальта находят применение в аппаратуре магнитной записи, а также сердечниках электромоторов и трансформаторов.
Для изготовления постоянных магнитов иногда применяется сплав, содержащий около 50 % кобальта, а также ванадий или хром.
Кобальт применяется как катализатор химических реакций.
Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов.
Силицид кобальта отличный термоэлектрический материал и позволяет производить термоэлектрогенераторы с высоким КПД.
Радиоактивный кобальт-60 (период полураспада 5,271 года) применяется в гамма-дефектоскопии и медицине.
60Со используется в качестве топлива в радиоизотопных источниках энергии.
Ни́кель — элемент десятой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (лат. Niccolum). Простое вещество никель (CAS-номер: 7440-02-0) — это пластичный, ковкий, переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен.
Название своё этот элемент получил от имени злого духа гор немецкой мифологии, который подбрасывал искателям меди минерал мышьяково-никелевый блеск, похожий на медную руду (ср. нем. Nickel — озорник); при выплавлении руд никеля выделялись мышьяковые газы, из-за чего ему и приписали дурную славу.
Физические свойства
Никель — серебристо-белый металл, не тускнеет на воздухе. Имеет гранецентрированную кубическую решетку с периодом a = 0,35238 нм, пространственная группа Fm3m. В чистом виде весьма пластичен и поддается обработке давлением. Является ферромагнетиком с точкой Кюри 358 °C.
Удельное электрическое сопротивление 0,0684 мкОм∙м.
Коэффициент линейного теплового расширения α=13,5∙10−6 K−1 при 0 °C
Коэффициент объёмного теплового расширения β=38—39∙10−6 K−1
Модуль упругости 196—210 ГПа.[2]
Химические свойства
Атомы никеля имеют внешнюю электронную конфигурацию 3d84s2. Наиболее устойчивым для никеля является состояние окисления Ni(II).
Никель образует соединения со степенью окисления +2 и +3. При этом никель со степенью окисления +3 только в виде комплексных солей. Для соединений никеля +2 известно большое количество обычных и комплексных соединений. Оксид никеля Ni2O3 является сильным окислителем.
Никель характеризуется высокой коррозионной стойкостью — устойчив на воздухе, в воде, в щелочах, в ряде кислот. Химическая стойкость обусловлена его склонностью к пассивированию — образованию на его поверхности плотной оксидной плёнки, обладающей защитным действием. Никель активно растворяется в азотной кислоте.
С оксидом углерода CO никель легко образует летучий и очень ядовитый карбонил Ni(CO)4.
Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе).
Никель горит только в виде порошка. Образует два оксида NiO и Ni2O3 и соответственно два гидроксида Ni(OH)2 и Ni(OH)3. Важнейшие растворимые соли никеля — ацетат, хлорид, нитрат и сульфат. Водные растворы солей окрашены обычно в зелёный цвет, а безводные соли — жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида: NiS (черный), Ni3S2 (желтовато-бронзовый) и Ni3S4 (серебристо-белый). Никель также образует многочисленные координационные и комплексные соединения. Например, диметилглиоксимат никеля Ni(C4H6N2O2)2, дающий чёткую красную окраску в кислой среде, широко используется в качественном анализе для обнаружения никеля
Водные растворы солей никеля(II) содержат ион гексаакваникеля(II) [Ni(H2O)6]2+. При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексамминникеля(II) [Ni(NH3)6]2+.
Никель образует комплексы с тетраэдрической и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) [NiCl4]2− имеет тетраэдрическую структуру, а комплекс тетрацианоникелат(II) [Ni(CN)4]2− имеет плоскую квадратную структуру.
В качественном и количественном анализе для обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названием диметилглиоксима. При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис(бутандиондиоксимато)никель(II). Это — хелатное соединение и бутандиондиоксимато-лиганд является бидентатным.