
- •1.Определение положения точки в пространстве. Вектор перемещения.
- •2. Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение
- •3.Кинематика твердого тела. Число степеней свободы. Поступательное движение твердого тела.
- •Вращательное движение твердого тела.
- •5.Движение отдельных точек вращающегося твердого тела.
- •6.Плоское движение твердого тела
- •7.Сила. Сложение сил и разложение силы на составляющие. Проекции силы на плоскость и ось.
- •8.Статическое и динамическое проявление сил. Законы Ньютона. Принцип независимости действия сил.
- •10.Основной закон динамики
- •12.Основной закон динамики системы материальных точек.
- •13.Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси
- •14.Основной закон динамики тела переменной массы (уравнение Мещерского)
- •15.Первое и второе соотношение Циолковского.
- •15.Первое и второе соотношение Циолковского.(продолжение1)
- •16.Относительность механического движения. Галилеевы преобразования координат и закон сложения скоростей.
- •17.Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •17.(Продолжение)Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •18.Замедление" хода времени. Относительная скорость.
- •19.Сравнение поперечных размеров тел. Эффект "сокращения" длин.
- •19.Сравнение поперечных размеров тел. Эффект "сокращения" длин.(продолжение)
- •20. Преобразования Лоренца. Интервал. Инвариантность интервала.
- •Релятивистская масса, релятивистский импульс. Релятивистское уравнение движения.
- •Релятивистская масса, релятивистский импульс.
- •23.Неинерциальные системы отсчёта. Силы инерции. Силы инерции во вращающихся системах отсчета. Силы инерции Кориолиса
- •23.Силы трения. Сухое трение. Силы трения качения
- •23.Силы трения. Сухое трение. Силы трения качения.Силы трения скольжения.(продолжение)
- •24.Вязкое трение. Движение тел в сопротивляющейся среде.
- •25.Упругие силы. Продольное сжатие и растяжение. Закон Гука
- •26.Деформация сдвига и кручения.
- •27.Закон всемирного тяготения.
- •28. Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал. Связь напряжённости и потенциала поля.
- •29.Работа и энергия. Работа силы тяжести. Работа упругих сил
- •30.Работа и кинетическая энергии. Потенциальная энергия. Закон сохранения энергии
- •31. Момент инерции твёрдого тела. Теорема Штейнера. Моменты инерции тел простой формы
- •Вращательное движение
- •34. Гироскопы. Прецессия волчка.
- •Давление покоящейся жидкости
- •Уравнение гидростатики Эйлера.
- •. Уравнение поверхности уровня.
- •Закон Паскаля
- •Сообщающиеся сосуды, заполненные однородной жидкостью.
- •Закон Архимеда.
- •Механика движущихся жидкостей. Расход жидкости. Уравнение неразрывности струи жидкости
- •Определения
- •Уравнение Бернулли. Формула Торричелли.
- •Примеры применения закона бернулли формула торичелли
- •Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •43.Колебательное движение. Характеристики колебаний.
- •44.Собственные колебания
- •45. Затухающие колебания.
- •48.Геометрическое представление колебаний
- •49.Сложение одинаково направленных колебаний. Частоты складываемых колебаний одинаковы
- •50.Сложение одинаково направ. Колебаний. Частоты складываемых колебаний различны, одинаковы амплитуды и начальные фазы.
- •51.Сложение взаимно перпендикулярных колебаний.
- •53.Б) Колебания пилообразной формы
- •54.В) Колебания треугольной формы
Сообщающиеся сосуды, заполненные однородной жидкостью.
СООБЩАЮЩИЕСЯ СОСУДЫ ЗАПОЛНЕНЫ ОДНОРОДНОЙ ЖИДКОСТЬЮ
Свободные поверхности
в левом и правом коленах находятся на
уровнях Z1
и Z2,
а давление на этих поверхностях равно
атмосферному Рa.
Сравним свободные поверхности с общей
для обоих сосудов частью, уровнем Z0,
на котором давление равно P0,
как показано на рис. 71.
Откуда:
(рис.
71)
Следовательно, свободные поверхности устанавливаются на одном уровне.
.СООБЩАЮЩИЕСЯ СОСУДЫ ЗАПОЛНЕННЫЕ НЕОДНОРОДНОЙ ЖИДКОСТЬЮ
(рис. 72)
Положим, что сосуды заполнены неоднородной жидкостью (несмешивающимися жидкостями с удельными весами 1 и 2. Через границу раздела жидкостей проводим уровень Z0 =0, на котором давление равно Р0 (рис. 72).
Сравним свободную
поверхность в левом сосуде с границей
раздела со стороны жидкости с удельным
весом 1:
(289)
для
правого сосуда аналогично:
(290)
Сравнивая записанные
выражения, получим, что свободные
поверхности в сосудах устанавливаются
на уровнях, обратно пропорциональных
удельным весам жидкостей:
(291)
Закон Архимеда.
Тело погружённое в жидкость
Рис.73
На его поверхность со стороны жидкости действуют силы давления , выделим в теле объём малого сечения , ось которого вертикальна, на нижнюю т верхнюю грани этого объёма действуют силы давления:
Равнодействующая
сил давления в проекции на вертикальную
ось =:
где: dS - проекция
dS1
(или dS2)
на горизонтальную плоскость. Разность
давлений по закону Паскаля равна
где: dZ - разность
уровней центров граней выделенного
объема. Тогда равнодействующая сил
давления равна
где dV - величина выделенного объема.
Вертикальная проекция сил давления, действующих на всю смоченную поверхность тела, может быть получена путем интегрирования предыдущего выражения:
т.е. сила, действующая со стороны жидкости на погруженное в нее тело по величине равна весу жидкости, вытесненной телом.
Формулировка закона: на тело, погруженное в жидкость действует выталкивающая сила, равная весу жидкости в объеме, вытесненном телом, и приложенная в той точке смоченной поверхности тела, в которой вертикаль, проведенная через центр масс вытесненной жидкости, пересекает эту поверхность.
Существенным в формулировке закона Архимеда является правильное указание точки приложения выталкивающей силы. Действительно, поскольку сила Архимеда обусловлена действием распределенных по поверхности сил давления со стороны жидкости, то и равнодействующая сил давления должна быть приложена к смоченной поверхности тела (но не к центру масс вытесненной жидкости, как это часто утверждается). Кроме того, наличие в плавающем теле деформаций можно объяснить только при таком рассмотрении силы Архимеда.
Механика движущихся жидкостей. Расход жидкости. Уравнение неразрывности струи жидкости
ВВЕДЕНИЕ
При изучении движения жидкостей и газов применяются различные способы описания движения. Наиболее часто используется метод, предложенный Эйлером. Но Эйлеру в области пространства, занятой движущейся жидкостью, выделяется точка, в которой определяются параметры движения различных жидких частиц, проходящих через эту точку в различные моменты времени.
Основной задачей механики движущейся жидкости является нахождение распределений скорости, плотности и давления по потоку жидкости:
Для установившегося потока, когда параметры потока в фиксированной точке его не изменяются с течением времени, задача сводится к нахождению распределений:
Ещё более упрощается задача для идеальной жидкости. В случае установившегося потока идеальной жидкости необходимо найти распределения: