
- •1.Определение положения точки в пространстве. Вектор перемещения.
- •2. Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение
- •3.Кинематика твердого тела. Число степеней свободы. Поступательное движение твердого тела.
- •Вращательное движение твердого тела.
- •5.Движение отдельных точек вращающегося твердого тела.
- •6.Плоское движение твердого тела
- •7.Сила. Сложение сил и разложение силы на составляющие. Проекции силы на плоскость и ось.
- •8.Статическое и динамическое проявление сил. Законы Ньютона. Принцип независимости действия сил.
- •10.Основной закон динамики
- •12.Основной закон динамики системы материальных точек.
- •13.Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси
- •14.Основной закон динамики тела переменной массы (уравнение Мещерского)
- •15.Первое и второе соотношение Циолковского.
- •15.Первое и второе соотношение Циолковского.(продолжение1)
- •16.Относительность механического движения. Галилеевы преобразования координат и закон сложения скоростей.
- •17.Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •17.(Продолжение)Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •18.Замедление" хода времени. Относительная скорость.
- •19.Сравнение поперечных размеров тел. Эффект "сокращения" длин.
- •19.Сравнение поперечных размеров тел. Эффект "сокращения" длин.(продолжение)
- •20. Преобразования Лоренца. Интервал. Инвариантность интервала.
- •Релятивистская масса, релятивистский импульс. Релятивистское уравнение движения.
- •Релятивистская масса, релятивистский импульс.
- •23.Неинерциальные системы отсчёта. Силы инерции. Силы инерции во вращающихся системах отсчета. Силы инерции Кориолиса
- •23.Силы трения. Сухое трение. Силы трения качения
- •23.Силы трения. Сухое трение. Силы трения качения.Силы трения скольжения.(продолжение)
- •24.Вязкое трение. Движение тел в сопротивляющейся среде.
- •25.Упругие силы. Продольное сжатие и растяжение. Закон Гука
- •26.Деформация сдвига и кручения.
- •27.Закон всемирного тяготения.
- •28. Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал. Связь напряжённости и потенциала поля.
- •29.Работа и энергия. Работа силы тяжести. Работа упругих сил
- •30.Работа и кинетическая энергии. Потенциальная энергия. Закон сохранения энергии
- •31. Момент инерции твёрдого тела. Теорема Штейнера. Моменты инерции тел простой формы
- •Вращательное движение
- •34. Гироскопы. Прецессия волчка.
- •Давление покоящейся жидкости
- •Уравнение гидростатики Эйлера.
- •. Уравнение поверхности уровня.
- •Закон Паскаля
- •Сообщающиеся сосуды, заполненные однородной жидкостью.
- •Закон Архимеда.
- •Механика движущихся жидкостей. Расход жидкости. Уравнение неразрывности струи жидкости
- •Определения
- •Уравнение Бернулли. Формула Торричелли.
- •Примеры применения закона бернулли формула торичелли
- •Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •43.Колебательное движение. Характеристики колебаний.
- •44.Собственные колебания
- •45. Затухающие колебания.
- •48.Геометрическое представление колебаний
- •49.Сложение одинаково направленных колебаний. Частоты складываемых колебаний одинаковы
- •50.Сложение одинаково направ. Колебаний. Частоты складываемых колебаний различны, одинаковы амплитуды и начальные фазы.
- •51.Сложение взаимно перпендикулярных колебаний.
- •53.Б) Колебания пилообразной формы
- •54.В) Колебания треугольной формы
23.Силы трения. Сухое трение. Силы трения качения
Силы трения скольжения.
С
ухим
(внешним) трением называют силы
сопротивления движению, возникающие
при относительном движении одного
твердого тела по поверхности другого.
Силы сопротивления движению определяются
наличием микро- и макронеровностей
поверхностей трущихся тел и взаимодействием
между ними. При скольжении одной твердой
поверхности по другой в плоскости
соприкосновения тел возникают силы,
направленные противоположно относительной
скорости. Эти силы и называют силами
трения скольжения. Основные законы и
закономерности для сил трения скольжения
получены опытным путем. Закон Кулона
определяет величину сил трения скольжения:
где: Fтр - сила трения скольжения, N - нормальная составляющая реакции поверхности, k -коэффициент трения скольжения.
Коэффициент трения скольжения k является безразмерной величиной и определяется природой и состоянием поверхностей трущихся тел.
Кроме закона Кулона опытным путем установлен ряд закономерностей для трения скольжения среди которых наиболее часто употребляются следующие:
1. При попытке сдвинуть одно тело по поверхности другого в плоскости контакта возникают силы, сопротивления, изменяющиеся от нуля до предельного значения, называемого силой трения покоя.
2. С увеличением относительной скорости трущихся тел силы - трения сначала убывает, а затем начинают возрастать.
3. Силы трения тем меньше, чем тверже трущиеся поверхности.
Силы трения качения.
Трение качения возникает при качении одного твердого тела по поверхности другого. При попытке сдвинуть тело по поверхности другого в плоскости соприкосновения возникает
с
ила
препятствующая этому (рис. 43).
23.Силы трения. Сухое трение. Силы трения качения.Силы трения скольжения.(продолжение)
Положим, что оба тела являются абсолютно твердыми, недеформируемыми, В этом случае нормальная составляющая реакции проходит через точку касания и центр масс катка (считаем его однородным симметричным телом, например, цилиндром). При такой модели любая по величине сила может вызвать качение катка, т.е. сопротивление движению.
не
возникает. Более того, сила
должна вызывать угловое ускорение при
любой по величине силе
,
что противоречит опыту.
Сопротивление качению может возникать в том случае, если нормальная реакция смещается относительно вертикального диаметра катка в сторону движения. Это происходит в том случае, если давление катка на поверхность будет не в точке, а по участку поверхности, а интенсивность давления будет больше впереди вертикального диаметра катка, как показано на рис. 44.
Рис.44
Следовательно, поверхность должна деформироваться, причем деформации будут несимметричными относительно вертикального диаметра.
Положим, что
сила
вызывает равномерное качение катка,
т.е.
Откуда
(190)
Здесь
(коэффициент трения качения) является
размерной величиной. Смысл его- ''плечо''
нормальной составляющей реакции
поверхности.