Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химия - методичка.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.69 Mб
Скачать

3.1 Строение атома

Первой научной гипотезой о строении атома, опирающейся на новые открытия, была модель, предложенная Томсоном. Обращение к построению атома было вызвано открытием электрона, являющегося составной частью всех атомов. Кроме того, явление радиоактивности говорило о том, что оно зависит от "изменений, происходящих в атомах радиоактивных веществ". В своей модели Томсон развивает теорию строения атома, предложенную в 1902 г. Уильямом Томсоном в статье "Эпинус атомизированный". У Томсона атом представляет собой сферу, равномерно заряженную положительным электричеством, в центре которой помещен электрон. Томсон опирается на эту модель и предлагает свою.

Модель Томсона представляла собой равномерно заряженную положительным зарядом сферу, в которой вращались или покоились электроны (корпускулы, как их называл Томсон). Поскольку атом в целом нейтрален, то общий заряд электронов равен положительному заряду сферы. Объем сферы гораздо больше объема корпускулы. Электроны вращаются по круговым орбитам, расположенным на различных расстояниях от центра сферы, зависящих от скорости электронов. При некоторой скорости корпускулы достигают поверхности сферы, а дальнейшее увеличение скорости заставляет их покидать сферу. Это означает, что атом распался. Томсон заключает, что атом устойчив тогда, когда кинетическая энергия корпускул не превышает некоторой предельной величины.

Модель Томсона не была свободна от недостатков. Главным из них был вопрос о распределении положительного заряда в атоме, размерах положительно заряженной сферы. Томсон знал об этом слабом месте своей модели.

К 1904 году японский физик Нагаока разработал раннюю, ошибочную «планетарную модель» атома («атом типа Сатурна»). Модель была построена на аналогии с расчётами устойчивости колец Сатурна (кольца уравновешены из-за очень большой массы планеты). Модель Нагаоки была неверна, но два следствия из нее оказались пророческими:

ядро атома действительно очень массивно;

электроны удерживаются на орбите благодаря электростатическим силам (подобно тому, как кольца Сатурна удерживаются гравитационными силами).

Модели атома Томсона был нанесен удар исследованиями Резерфорда и его учеников по рассеянию а- частиц в 1911 году. Суть этих исследований заключалась в следующем. Поток а-частиц, испускаемых радием, пропускался через маленькое отверстие в трубку с откаченным из нее воздухом. На небольшом расстоянии от отверстия находился сернистоцинковый экран. При ударе о него а-частиц получалось изображение светлого пятна. При закрывании отверстия тонкой металлической пластинкой изображение светлого пятна на экране несколько размывалось, т.е. а-частицы рассеивались веществом металлической пластинки. Изучение рассеяния показало, что небольшое число а-частиц (примерно 1/8000) отклонялось на угол больше 90°. Модель Томсона не допускала таких больших отклонений. Математический расчет показывал, что такие большие отклонения могут происходить, если а-частицы попадают под влияние сильных электрических полей, существующих вокруг зарядов, сконцентрированных в очень малом объеме. Электрическое поле, создаваемое положительно заряженной, размытой по всему объему атома сферой, не могло оказывать такого сильного влияния на а-частицу, и ее столкновение с электроном не могло повлиять на траекторию движения, поскольку масса а-частицы почти в 8000 раз больше массы электрона. Поэтому Резерфорд приходил к выводу, что почти вся масса атома сосредоточена в положительно заряженном ядре. Вокруг него, как планеты вокруг Солнца, вращаются электроны.

Модель атома Резерфорда - новый этап в развитии физики атома.

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка.

А.Зоммерфельд дополнил модель Бора предложив, что электроны вращаются вокруг ядра по эллиптической орбите (1915 г.)

Постулаты Бора

Постулаты Бора — основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

Первый постулат:

Атомы имеют ряд стационарных состояний соответствующих определенным значениям энергий: Е1, Е2...En. Находясь в стационарном состоянии, атом энергии не излучает и не поглощает, несмотря на движение электронов.

Второй постулат

В стационарном состоянии атома электроны движутся по стационарным орбитам, для которых выполняется квантовое соотношение:

m•V•r = n•h/2•p

где m•V•r =L - момент импульса, n=1,2,3...,h-постоянная Планка.

Третий постулат

Излучение или поглощение энергии атомом происходит при переходе его из одного стационарного состояния в другое. При этом излучается или поглощается порция энергии (квант), равная разности энергий стационарных состояний, между которыми происходит переход:

ε= h• ν= Em-En

Достоинства теории Бора

  • Объяснила дискретность энергетических состояний водородоподобных атомов.

  • Теория Бора подошла к объяснению внутриатомных процессов с принципиально новых позиций, стала первой полуквантовой теорией атома.

  • Эвристическое значение теории Бора состоит в смелом предположении о существовании стационарных состояний и скачкообразных переходов между ними..

Недостатки теории Бора

  • Не смогла объяснить интенсивность спектральных линий.

  • Справедлива только для водородоподобных атомов и не работает для атомов, следующих за ним в таблице Менделеева.

  • Теория Бора логически противоречива: не является ни классической, ни квантовой. В системе двух уравнений, лежащих в её основе, одно — уравнение движения электрона — классическое, другое — уравнение квантования орбит — квантовое.