
- •1. Представление информации в эвм
- •1.1. Общие положения
- •1.2. Цифровая форма представления информации
- •1.3. Системы счисления
- •1.3.1. Общие положения
- •1.3.2. Двоичная система счисления
- •1.3.3. Смешанные системы счисления
- •1.3.4. Таблицы сложения и умножения в двоичной системе счисления
- •1.3.5. Перевод чисел из одной системы счисления в другую
- •1.4. Способы представления чисел со знаком
- •1.4.1. Общие положения
- •1.4.2. Дополнительный код.
- •1.4.3. Обратный код
- •1.5. Формы представления числовых данных
- •1.5.1. Общие положения
- •1.5.2. Представление числовых данных с фиксированной запятой
- •1.5.3. Представление числовых данных с плавающей запятой
- •2. Представление символьной информации
- •3. Представление графической информация
- •4. Oсновы схемотехники
- •4.1. Основы математической логики
- •4.2. Логические элементы
- •4.3. Проектирование логических схем
- •4.3.1. Комбинационные схемы и конечные автоматы
- •4.3.2. Синтез комбинационных схем
- •4.4. Элементы памяти (триггеры)
- •С амыми универсальными и сложными являются jk-триггеры. Они могут строиться как со статическим, так и с динамическим управлением. Универсальный jk-триггер
- •4.5. Регистры
- •4.6. Счетчики
- •5. Арифметические основы эвм
- •5.1. Основные положения
- •5.2. Арифметические операции с плавающей запятой
- •5.3. Десятичная арифметика
- •5.4. Схемы выполнения основных операций над числами с фиксированной запятой в двоичной системе счисления
- •6. Теоретические основы проектирования устройств обработки информации
- •6.1. Микропрограммы выполнения арифметических операций
- •6.1.1. Структура арифметико-логического устройства (алу) эвм
- •6.2.1. Язык микроопераций для представления алгоритмов выполнения арифметических операций
- •7. Основы проектирования операционной части алу
- •7.1. Этапы проектирования
- •7. 2. Проектирование операционной части алу
- •7.2.1. Разработка структурной схемы операционной части алу
- •7.2.2. Разработка функциональной схемы операционной части алу
- •8. Проектирование управляющей части алу
- •8.1. Способы построения управляющей части алу
- •8.2. Проектирование управляющей части алу на основе конечных автоматов
- •8.2.1. Общие вопросы проектирования устройств управления на основе конечных автоматов
- •8.2.2. Основные этапы проектирования схем мпа
- •8.2.3. Проектирование мпа на основе автомата Мура
- •8.2.4. Проектирование мпа на основе автомата Мили
- •8.3. Проектирование микропрограммных устройств управления
- •8.3.1. Основные принципы работы микропрограммных устройств управления
- •8.3.2. Типы микропрограммных устройств управления
- •8.3.4. Кодирование поля микроопераций регистра микрокоманд
- •8.3.5. Кодирование поля адресов схемы формирования адресов микрокоманд
- •9. Глоссарий
1.3.2. Двоичная система счисления
Для двоичной системы счисления определены
две цифры: ноль(0) и единица (1). Любое
число большее 1 является многоразрядным
и записывается в виде последовательности
нулей и единиц. Например, десятичное
число 134 в двоичной системе записывается
как 10000110. Это сокращенная запись полинома
.
Значение этого полинома равно
.
Пример числа, имеющего целую и дробную
часть: 11001,0101. Это сокращенная запись
полинома:
= 25,3125.
1.3.3. Смешанные системы счисления
Смешанными системами счисления называются системы, в которых цифры числа представлены в одной системе счисления, а все число в другой (с большим основанием). Примером может являться двоично-десятичная система счисления. В смешанной двоично-десятичной системе каждая цифра числа задана в двоичной системе:
0 – 0000 5 – 0101
1 – 0001 6 – 0110
2 – 0010 7 – 0111
3 – 0011 8 – 1000
4 – 0100 9 – 1001, а все число, например 134 (в десятичной системе) – тремя тетрадами: 0001 0011 0100.
Двоично-десятичная система счисления широко используется в ЭВМ для представления десятичных чисел и их обработки (десятичная арифметика) с использование двоичных элементов хранения и обработки.
Кроме двоичной и двоично-десятичной систем счисления в машинах используются восьмеричная и шестнадцатеричная системы счисления.
В восьмеричной системе счисления в качестве разрядных цифр используют 8 первых цифр десятичной системы, а в шестнадцатеричной – 10 цифр десятичной системы дополняют шестью первыми буквами английского алфавита.
В табл.1 приведены эквиваленты десятичных чисел в двоичной, восьмеричной и шестнадцатеричной системах счисления.
Таблица 1 Эквивалентность чисел
Десятичные числа |
Эквиваленты в системах счисления |
Десятичные числа |
Эквиваленты в системах счисления |
||||
q=2 |
q=8 |
q=16 |
q=2 |
q=8 |
q=16 |
||
0 |
0000 |
0 |
0 |
8 |
1000 |
10 |
8 |
1 |
0001 |
1 |
1 |
9 |
1001 |
11 |
9 |
2 |
0010 |
2 |
2 |
10 |
1010 |
12 |
A |
3 |
0011 |
3 |
3 |
11 |
1011 |
13 |
B |
4 |
0100 |
4 |
4 |
12 |
1100 |
14 |
C |
5 |
0101 |
5 |
5 |
13 |
1101 |
15 |
D |
6 |
0110 |
6 |
6 |
14 |
1110 |
16 |
E |
7 |
0111 |
7 |
7 |
15 |
1111 |
17 |
F |
Восьмеричная и шестнадцатеричная системы счисления используются в основном для ввода-вывода данных и отладки. В некоторых из этих случаев работать с двоичной информацией приходится и операторам, и программистам. И здесь возникают проблемы. Дело в том, что многоразрядные двоичные числа человеком плохо запоминаются. Человек привык к восприятию укрупненных форм информации. Восьмеричная и шестнадцатеричная системы являются укрупненными формами двоичной системы счисления.
Например, двоичное число 1101001110110100 довольно трудно запомнить. Но если цифры записи разбить (с младших разрядов) на тетрады – 1101 0011 1011 0100 – и каждую тетраду записать шестнадцатеричной цифрой, то в результате получаем последовательность – D3B4, которую легко запомнить.