
- •108 Сурак
- •3. 3 Өлшемді Лаплас теңдеуін 2-өлшемді декомпозиция тәсілімен программалау.
- •208 Сурак
- •1. Флинна таксономиясы. Мisd, мimd архитектуралары.
- •2. Mpi программасын компиляциялау, жинау және орындау.
- •308 Сурак
- •1. Жарыс күі. Синхронизация. Философтар есебі.
- •2. Коллективті мәлімет алмасу функциялары. Редукция мысалдары.
- •3. Параллельді векторларды скаляр көбейту программасын жазыңыз
- •408 Сурак
- •1. Қазіргі параллель архитектуралы компьютерлер. Аппараттық бөлімі.
- •5 08 Сурак
- •3. 3 Өлшемді Лаплас теңдеуін 2-өлшемді декомпозиция тәсілімен программалау.
- •1. Қазіргі параллель архитектуралы компьютерлер. Программалық бөлімі.
- •2. Mpi_Dims_create() функциясын қолдану мысалы.
- •608 Сурак
- •3. Санды полиномдылыққа тексеру параллельді программасын жазыңыз.
- •1. Shared & distributed memory архитектуралары.
- •2. Нүкте-нүкте коммуникациялары. Mpi_Bsend(), mpi_Brecv функцияларын қолдану мысалдары.
- •7 08 Сурак
- •1. Таксономия Флинна. Архитектуры sisd, simd.
- •2 Что такое mpi ? Основные концепции и возможности.
- •3. Напишите программу параллельного вычисления числа pi.
- •808 Сурак
- •1 Состояние гонки. Алгоритм с конкуренцией. Синхронизация. Задача обедающих философов.
- •2. Коллективные операции обмена сообщениями
- •3. Напишите программу параллельного поиска максимального числа в массиве.
- •9 08 Сурак
- •1.Структура mpi программы в стиле spmd. Приведите пример.
- •2. Коммуникации точка/точка. Примеры использования фукнцииMpi_Send(), mpi_Recv.
- •3. Напишите программу параллельного вычисления определенного интеграла от фукнции 2*cos(X) в интервале [0,1].
- •1 Сурак
- •1 .Современные архитектуры параллельных компьютеров. Программная часть.
- •2. Декартова топология. Пример использования периодических соседей.
- •3. 3 Өлшемді Лаплас теңдеуін 2-өлшемді декомпозиция тәсілімен программалау.
- •181 Сурак
- •1. Примеры программ в стиле spmd и mpmd
- •2. Структура mpi программ в стиле mpmd. Приведите пример.
- •3. Напишите программу параллельного вычисления числа e.
- •21 Сурак
- •1.Таксономия Флинна. Архитектуры sisd, simd.
- •2.Отличия mpi и pvm.
- •3. Напишите программу параллельного вычисления числа e.
- •31 Сурак
- •1. Распределенная и разделяемая конфигурация памяти. Архитектура numa.
- •2. Пользовательские типы данных. Тип mpi_type_struct. Примеры.
- •41 Сурак
- •1.Суперскалярные и векторные процессоры.
- •2. Группы и коммуникаторы mpi. Создание новых групп (коммуникаторов).
- •51 Сурак
- •2. Как можно вычислить время, которое тратится на расчет определенного участка кода в mpi?
- •3. Параллельная модификация метода Гаусса-Зейделя. Решение 2-мерного уравнения Лапласа 1 мерной декомпозицией (параллельный метод Гаусса-Зейделя).
- •61 Сурак
- •71 Сурак
- •81 Сурак
- •91 Сурак
- •1.Numa архитектурасы.
- •2.Қолданушы мәлімет типтері. Mpi_type_struct. Мысалдар.
- •2 Сурак
- •1.Shared and distributed memory архитектурлары.
- •2.Mpi_White(), mpi_Probeфункциялары.
- •3.Санды полиномдылыққа тексеру параллельді программасын жазыңыз.
- •12 Сурак
- •1.Процесс дегеніміз не? Ағын дегеніміз не? Прцесс пен ағын айырмашылығы.
- •3. 3 Өлшемді Лаплас теңдеуін 1 –өлшемді тәсілімен программалау.
- •282 Сурак
- •1.Суперскаляр және векторлы процессорлар.
- •2.Виртуалды топология. Декарт және граф топологиясы. Қандай жағдайларда оларды қолдану керек. Декарт топологиясын құру кезеңдері.
- •3.2 Өлшемді Лаплас теңдеуін 1-өлшемді декомпозиция тәсілімен программалау.
- •32 Сурак
- •1.Есепті декомпозициялау және аймақты декомпозициялау тәсілі. Мысалдар.
- •2.Қолданушы мәлімет типтері. Мәліметтер үшін жады көлемі. Жадыны босату.
- •42 Сурак
- •Есепті декомпозициялау және аймақты декомпозициялау тәсілі. Мысалдар.
- •Қолданушы мәлімет типтері. Mpi_type_contiguous. Мысалдар.
- •Символдық массивте жолды табудың параллельді программасын жазыңыз.
- •52 Сурак
- •1. Распределенная и разделяемая конфигурация памяти. Архитектура numa.
- •2. ФункцииMpi_Wait(), mpi_Probe
- •62 Сурак
- •1. Параллелизация с декомпозицией задачи и декомпозицией области. Примеры.
- •2.Пользовательские типы данных. Тип mpi_type_vector (hvector). Примеры
- •3. Напишите программу параллельного поиска минимального числа в массиве.
- •72 Сурак
- •1. Закон Амдала с учетом сети. Ускорение. Эффективность.
- •2.Коммуникации точка/точка. Примеры использования фукнции mpi_Isend(), mpi_Irecv.
- •3. Напишите параллельную программу проверки простого числа.
- •82 Сурак
- •92 Сурак
- •3 Сурак
- •13 Сурак
- •1. Состояние гонки. Алгоритм с конкуренцией. Синхронизация. Задача обедающих философов.
- •2. Функции mpi_Gather, mpi_scatter, mpi_allgather, mpi_alltoall, mpi_allreduce. Их различия. Примеры.
- •3. Напишите программу параллельного скалярного умножения векторов.
- •23 Сурак
- •1. Можно ли запустить программу simd на современных процессорах семейства x86.
- •2.Пользовательские типы данных. Тип mpi_type_contiguous. Примеры.
- •3.Напишите программу параллельного поиска минимального числа в массиве.
- •383 Сурак
- •1.В каких случаях эффективно использование параллельных методик программирования ?
- •2. Есть мнение, что для написания программ mpi достаточно лишь 5-ти основых функций. Назовите их. Как Вы относитесь к данному высказыванию ?
- •3. Решение 3-мерного уравнения Лапласа методом 1-мерной декомпозиции.
- •43 Сурак
- •1. Суперскалярные и векторные процессоры.
- •2. Виртуальные топологии. Декартова и графовая топологии. В каких случаях их следует использовать. Основные шаги для создания декартовой топологии.
- •3. Параллельное умножение матрицы и вектора в mpi.
- •53 Сурак
- •7 Состояние гонки. Алгоритм с конкуренцией. Синхронизация. Задача обедающих философов.
- •2.Коллективные операции обмена сообщениями. Редукция. Примеры.
- •3. Напишите программу параллельного скалярного умножения векторов.
- •63 Сурак
- •1. Современные архитектуры параллельных компьютеров. Аппаратная часть.
- •2.Группы и коммуникаторы mpi. Создание новых групп (коммуникаторов).
- •3. Параллельное умножение матриц в mpi.
- •73 Сурак
- •1 Таксономия Флинна. Архитектуры sisd, simd.
- •2.Что такое mpi ? Основные концепции и возможности.
- •3.Напишите программу параллельного вычисления числа pi.
- •83 Сурак
- •1.Закон Амдала. Ускорение. Эффективность.
- •3. Напишите параллельную программу проверки простого числа.
- •93 Сурак
- •1.Современные архитектуры параллельных компьютеров. Программная часть.
- •2.Пример использования фукнции mpi_Dims_create
- •3. Решение 3-мерного уравнения Лапласа методом 1-мерной декомпозиции.
- •4 Сурак
- •1.Примеры программ в стиле spmd и mpmd
- •2.Коммуникации точка/точка. Примеры использования фукнции mpi_Send(), mpi_Recv.
- •3.Напишите программу параллельного вычисления определенного интеграла от функции
- •14 Сурак
- •1. Таксономия Флинна. Архитектуры sisd, simd.
- •2.Что такое mpi ? Основные концепции и возможности.
- •3.Напишите программу параллельного вычисления числа pi.
- •24 Сурак
- •1.Что такое процесс ? Отличия процесса от потока.
- •2.Пример использования фукнции mpi_Cart_create
- •3.Решение 3-мерного уравнения Лапласа методом 1-мерной декомпозиции.
- •34 Сурак
- •1.Современные архитектуры параллельных компьютеров. Программная часть.
- •2.Есть мнение, что для написания программ mpi достаточно лишь 5-ти основых функций. Назовите их. Как Вы относитесь к данному высказыванию ?
- •3.Решение 3-мерного уравнения Лапласа методом 3-мерной декомпозиции.
- •484 Сурак
- •1.Современные архитектуры параллельных компьютеров. Аппаратная часть.
- •2.Пример использования фукнции mpi_cart_coords
- •3. 2 Өлшемді Лаплас теңдеуін 2-өлшемді декомпозиция тәсілімен программалау.
- •54 Сурак
- •1.Таксономия Флинна. Архитектуры misd, mimd.
- •2.Структура mpi программы в стиле spmd. Приведите пример.
- •3. 2*Sin(X) функциясының интегралын [0,1] аймақта параллельді есептеңіз.
- •64 Сурак
- •1.Закон Амдала с учетом сети. Ускорение. Эффективность.
- •2.Типы данных в mpi. Для чего они нужны
- •3.Напишите параллельную программу проверки совершенного числа.
- •74 Сурак
- •1.Таксономия Флинна. Архитектуры sisd, simd.
- •2.Структура mpi программ в стиле mpmd. Приведите пример.
- •3.Параллельная модификация метода Гаусса-Зейделя. Решение 2-мерного уравнения Лапласа 1 мерной декомпозицией (параллельный метод Гаусса-Зейделя).
- •84 Сурак
- •1.Суперскалярные и векторные процессоры.
- •2.Пользовательские типы данных. Размеры памяти для данных. Освобождение памяти.
- •3.Напишите программу параллельного поиска максимального числа в массиве.
- •94 Сурак
- •1.Архитектура numa.
- •2.Виртуальные топологии. Декартова и графовая топологии. В каких случаях их следует использовать. Основные шаги для создания декартовой топологии.
- •3.Параллельное умножение матрицы и вектора в mpi.
- •5 Сурак
- •1.Таксономия Флинна. Архитектуры misd, mimd.
- •2.Примеры программ в стиле spmd и mpmd
- •3.Напишите программу параллельного вычисления определенного интеграла от фукнции 2*sin(X) в интервале [0,1].
- •15 Сурак
- •1.В каких случаях эффективно использование параллельных методик программирования ?
- •25 Сурак
- •1. Можно ли запустить программу simd на современных процессорах семейства x86.
- •2. Пользовательские типы данных. Тип mpi_type_indexed (hindexed). Примеры.
- •3.Параллельное умножение матриц в mpi.
- •35 Сурак
- •1.Распределенная и разделяемая конфигурация памяти. Архитектура numa.
- •2. Пример использования фукнцииMpi_Cart_shift()
- •3.. Напишите параллельную программу проверки простого числа.
- •45 Сурак
- •1.Закон Амдала. Ускорение. Эффективность.
- •585 Сурак
- •1. Можно ли запустить программу simd на современных процессорах семейства x86.
- •65 Сурак
- •1.Spmd, mpmd стилінде программалау мысалдары.
- •2.Топтар мен коммуникаторлар. Ранг.
- •3 . 2*Cos(X) функциясының интегралын [0,1] аймақта параллельді есептеңіз.
- •75 Сурак
- •1.Амдал заны. Үдеу. Тиімділік.
- •2.Mpi мәлімет типтері. Олар не үшін керек ? Қолдану мысалдары.
- •3.Санды қарапайымдылықа тексеру параллельді программасын жазыңыз.
- •85 Сурак
- •1.Қазіргі параллель архитектуралы компьютерлер. Аппараттық бөлімі.
- •2.Mpi_cart_coords()функциясын қолдану мысалы.
- •3.2 ӨлшемдіЛапластеңдеуін 2-өлшемді декомпозициятәсіліменпрограммалау.
- •95 Сурак
- •1.Есепті декомпозициялау және аймақты декомпозициялау тәсілі. Мысалдар.
- •2.Mpi_Gather, mpi_scatter, mpi_allgather, mpi_alltoall, mpi_allreduce функциялары. Олардың айырмашылығы. Мысалдар.
- •3.Массивтемаксималсандыесептеупараллельдіпрограммасынжазыңыз.
- •6 Сурак
- •1.Флинна таксономиясы. Мisd, мimd архитектуралары.
- •2.Mpi программасын компиляциялау, жинау және орындау.
- •3.Гаусс-Зейдель тәсілінің параллельді түрі. 2 өлшемді Лаплас теңдеуін 1 өлшемді декомпозициялау (Параллельді Гаусс-Зейдель тәсілі).
- •16 Сурак
- •1.Процесс дегеніміз не? Ағын дегеніміз не? Прцесс пен ағын айырмашылығы.
- •3.3 Өлшемді Лаплас теңдеуін 3-өлшемді декомпозиция тәсілімен программалау.
- •26 Сурак
- •36 Сурак
- •2. Spmd стилінде mpi. Мысал келтіріңіз.
3 . 2*Cos(X) функциясының интегралын [0,1] аймақта параллельді есептеңіз.
double f(double x)
{return 2*cos(x);}
int main(intargc,char **argv)
{
intsize,rank;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
float h=0.05,a=0,b=1,s=0.0;
for(inti=rank; a+h*(i+1)<b+h; i+=size)
{ s+=h*f(a+h*(i+1)); }
if(rank!=0)
{ MPI_Send(&s,1,MPI_FLOAT,0,1,MPI_COMM_WORLD);
}
if(rank==0)
{ float r;
MPI_Recv(&r,1,MPI_FLOAT,1,1,MPI_COMM_WORLD,&status);
s+=r;
printf("s=%f\n ",s);
}
}
75 Сурак
1.Амдал заны. Үдеу. Тиімділік.
В общем случае структура информационного графа алгоритма занимает промежуточное положение между крайними случаями полностью последовательного и полностью параллельного алгоритма. В этой структуре имеются фрагменты, которые допускают одновременное выполнение на нескольких функциональных устройствах -- это параллельная часть программы. Есть и фрагменты, которые должны выполняться последовательно и на одном устройстве — это последовательная часть программы.
С помощью информационного графа можно оценить максимальное ускорение, которого можно достичь при распараллеливании алгоритма там, где это возможно. Предположим, что программа выполняется на машине, архитектура которой идеально соответствует структуре информационного графа программы. Пусть время выполнения алгоритма на последовательной машине Т1, причем Тs — время выполнения последовательной части алгоритма, а Тр — параллельной. Очевидно:T1 = TS + Тр.
При выполнении той же программы на идеальной параллельной машине, N независимых ветвей параллельной части распределяются по одной на V процессоров, поэтому время выполнения этой части уменьшается до величины Тр / N, а полное время выполнения программы составит:T2=TS+ Tp/N.
Коэффициент ускорения, показывающий, во сколько раз быстрее программа выполняется на параллельной машине, чем на последовательной, определяется формулой:Х= Т}/Т2 = (Ts + Tp) / (Ts + Tp/N) = 1/(S + P/N),
где S= Ts / (Ts + Tp) и P= Tp / (Ts + Tp) — относительные доли последовательной и параллельной частей (S+ Р= 1). График зависимости коэффициента ускорения от числа процессоров и степени параллелизма алгоритма (относительной доли параллельной части) приведен на рис. 2.5. Эта зависимость носит название закона Амдала.
Из рисунка видно, что для программ (алгоритмов) с небольшой степенью параллелизма использование большого числа процессоров не дает сколько-нибудь значительного выигрыша в быстродействии. Если же степень параллелизма достаточно велика, коэффициент ускорения может быть большим. Начиная с некоторого значения, увеличение числа процессоров дает только небольшой прирост производительности.
2.Mpi мәлімет типтері. Олар не үшін керек ? Қолдану мысалдары.
MPI-константы, шаблоны и прототипы находятся в MPI-заголовочном файле mpi.h, который должен стандартным для C образом #include<mpi.h> присоединяться к программе пользователя.
Для вычислений на разнородных компьютерах необходимо как-то описать передаваемые данные, чтобы их машинное представление преобразовывалось нужным образом между различными архитектурами. MPI содержит строгое описание типов передаваемых данных, от машинных примитивов до сложных структур, массивов и индексов.
Все функции приема/передачи сообщений имеют в качестве одного из своих аргументов тип данных, чье C-определение есть MPI_Datatype. В MPI определены несколько значений MPI_Datatype, которые достаточны для представления типов на большинстве архитектур:
MPI_CHAR-знаковое символьное
MPI_SHORT-знаковое коротк целое
MPI_INT-знаковое целое
MPI_LONG-знаковое длин целое
MPI_UNSIGNED_CHAR-беззнак символьное
MPI_UNSIGNED_SHORT-беззнаккоротк целое
MPI_UNSIGNED-беззнак целое
MPI_UNSIGNED_LONG-беззнак длинное целое
MPI_FLOAT-число с плав точкой
MPI_DOUBLE-число двойной точн
MPI_LONG_DOUBLE-число четырехкрточн
MPI_BYTE=битовые данные
Производные типы данных или пользовательские получаются из базовых типов. MPI представляет несколько способов создания типов данных без явного конструирования карты типа:
· Непрерывный: это простейший способ конструирования нового типа. Он производит новый тип данных из count копий существующего со смещениями, увеличивающимися на протяженность oldtype (исходного типа). Простейший пример - массив элементов какого-то уже определенного типа;
· Векторный: это несколько обобщенный непрерывный тип, который допускает регулярные пробелы в смещениях. Элементы отделяются промежутками кратными протяженности исходного типа данных. Пример - столбцы матрицы, при определении матрицы как двумерного массива;
· H-векторный: похож на векторный, но расстояние между элементами задается в байтах;
· Индексный: при создании этого типа используется массив смещений исходного типа данных;
смещения измеряются в терминах протяженности исходного типа данных;
· H-индексный: похож на индексный, но смещения задаются в байтах;
· Структурный: обеспечивает самое общее описание. Фактически, если исходные аргументы состоят из базовых типов MPI, задаваемая структура есть в точности карта создаваемого типа.
Рассмотрим более подробно создание непрерывного типа данных. Непрерывный тип создается с использованием функции MPI_Type_contiguous, производящей новый тип данных, делая count копий исходного типа со смещениями, увеличивающимися на протяженность oldtype. Например, если исходный тип данных (oldtype) имеет карту типа {(int,0),(double,8)}, то MPI_Type_contiguous( 2, oldtype, &newtype); произведет тип данных newtype с картой типа {(int,0),(double,8),(int,16),(double,24)}.