Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электрический привод .doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
37.09 Mб
Скачать

6.2. Регулирование скорости вращения асинхронного двигателя с помощью резисторов [1]

Данный способ регулирования координат, называемый часто ре­остатным, осуществляется введением добавочных активных резис­торов в статорные или роторные цепи АД (см. рис. 62). Он привле­кателен простотой своей реализации, но имеет в то же время невы­сокие показатели качества регулирования и экономичности.

Включение добавочных резисторов R в цепь статора. Этот способ применяет­ся главным образом для регулирования (ограничения) в переход­ных процессах тока и момента АД с короткозамкнутым ротором. Как следует из формулы (146), включение резистора R в цепь статора ведет при данной скорости (скольжении) к снижению токов стато­ра и ротора. Другими словами, все искусственные электромехани­ческие характеристики располагаются в первом квадранте ниже и левее естественной. С учетом того, что скорость идеального холос­того хода Ω0 при включении R не изменяется, получаемые искус­ственные электромеханические характеристики можно представить семейством кривых 2-4, которые расположены ниже естественной характеристики 1, построенной при R = 0, причем большему зна­чению R соответствует больший наклон искусственных характе­ристик 2-4 (рис. 67, а). Практическая ценность этих характеристик состоит в обеспечении возможности ограничения токов Iкз АД при пуске.

Рис. 67. Электромеханические (а) и механические (б) характеристики АД при регулировании координат с помощью резисторов в цепи статора

Для получения искусственных механических характеристик про­анализируем влияние R на координаты их характерных точек.

Скорость идеального холостого хода ω1 = 2πf1/pп не изменяется при R = var, т.е. все искусственные характеристики проходят через эту точку на оси скорости (скольжения).

Координаты точки экстремума Мк и sк изменяются при варьиро­вании R, а именно: в соответствии с (184) и (185) при увеличении R критический момент и критическое скольжение уменьшаются. Уменьшается и пусковой момент, который определяется формулой (183) при s = 1. Проведенный анализ позволяет представить искусственные механические характеристики 2-4 АД при R = var в виде, показанном на рис. 67, б. Такие характеристики могут использо­ваться при необходимости для снижения в переходных процессах момента АД, в том числе и пускового. В то же время эти искусст­венные характеристики мало пригодны для регулирования скорости АД, так как они обеспечивают небольшой диапазон ее изменения; по мере увеличения R жесткость характеристик и перегрузочная способность АД, характеризуемая критическим моментом, сни­жаются; способ имеет и низкую экономичность.

В силу этих недостатков регулирование скорости АД с помощью активных резисторов в цепи его статора применяется редко. Этот способ обычно используется для ограничения токов и моментов АД с короткозамкнутым ротором в различных переходных процессах - при пуске, реверсе и торможении. Например, такая схема применя­ется в ЭП лифтов с двухскоростными АД. В таких ЭП при переходе с высокой скорости на пониженную в цепь низкоскоростной обмот­ки статора вводятся добавочные резисторы, которые обеспечива­ют ограничение тока и момента АД. Отметим, что в некоторых ЭП ограничение тока и момента осуществляется включением R в одну фазу (так называемые несимметричные схемы), что позволяет по­лучить эффект уменьшения тока и момента при меньшем числе ре­зисторов.

Включение добавочных резисторов R2д в цепь обмотки ротора. Этот способ (см. схему рис. 62, а) применяется как с целью регулирования тока и момента АД с фазным ротором, так и для регулирования его скорости.

Искусственные электромеханические характеристики при R = var имеют вид, показанный на рис. 68 и могут использоваться для регулирования (ограничения) пускового тока Iкз=Iп.

Для построения в этом случае искусственных механических ха­рактеристик проводят анализ их характерных точек. В соответствии с (184) скорость идеального холостого хода АД и его максималь­ный (критический) момент остаются неизменными при регулиро­вании R, а критическое скольжение sк, как это следует из (185), из­меняется пропорционально сопротивлению этого резистора.

Выполненный анализ позволяет построить естественную 1 (R=0) и искусственные 2 и 3 (R2д3 > R2д2) характеристики (рис. 68) и сделать вывод о том, что за счет изменения R можно повышать пусковой момент АД вплоть до критического значения Мк при од­новременном снижении пускового тока. Это позволяет сохранить перегрузочную способность двигателя, что весьма важно при регу­лировании его скорости.

Рассматриваемый способ имеет следующие показатели: неболь­шой диапазон регулирования скорости из-за снижения жесткости характеристик и роста потерь энергии по мере его увеличения;

плавность регулирования скорости, изменяющаяся только вниз от ос­новной, определяется плавностью изменения добавочного резистора R; небольшие затраты, связанные с созданием данной системы ЭП, так как для регулирования обычно используются простые и деше­вые ящики металлических резисторов. В то же время эксплуатаци­онные затраты оказываются значительными, поскольку велики по­тери энергии в АД.

С увеличением скольжения s возрастают потери в роторной цепи (178), т. е. реализация большого диапазона регулирования скорос­ти приводит к значительным потерям энергии и снижению КПД ЭП, следовательно, данный способ применяется при небольшом тре­буемом диапазоне регулирования или кратковременной работе дви­гателя на пониженных скоростях, например в ЭП подъемно-транс­портных машин и механизмов.

Рис.68. Механические характеристики при различных сопротивлениях R добавочного резистора в цепи ротора

Расчет регулировочных резисторов

Задача по расчету резисторов в цепях статора и ротора обычно формулируется следующим образом: известны паспортные данные двигателя; требуется рассчитать сопротивление добавочных резис­торов в цепях ротора или статора, при включении которых искусст­венные характеристики пройдут соответственно через точки с коор­динатами (Ωи, Iи) или (Ωи, Ми). Расположение характеристик обычно задается по соображениям регулирования скорости или получения требуемых (допустимых) значений пусковых тока или момента АД.

Расчет резисторов в цепи статора. Рассмотрим наиболее распрост­раненную задачу, когда включение добавочного резистора во все три фазы статора (симметричная схема) должно обеспечить заданную кратность пускового тока λи = I1пи /I1пе или момента λм = Мпи/Мпе, где I1пи и I1пе, Мпи, Мпе соответственно пусковые токи и моменты АД при включении добавочного резистора (пи) и без него (пе).

Воспользуемся для расчета методикой, приведенной в [3], для чего введем понятия полного комплексного сопротивления короткого замыкания zк, соответствующего моменту пуска АД:

(189)

а также активного rк и реактивного хк сопротивлений короткого замыкания, определяемых по формулам

rк=zкcosφп, (190)

(191)

где cosφп - коэффициент мощности АД в момент его пуска.

Тогда для получения заданных кратностей пусковых тока а или момента ц требуемое сопротивление добавочного резистора опре­делим по формулам

(192)

(193)

Основная трудность при использовании формул (190),...,(193) со­стоит в определении cosφп=cosφкз, значение которого обычно не приводится в справочниках и каталогах. На рис. 69 приведены усред­ненные зависимости коэффициента мощности асинхронных двигате­лей от их номинальной мощности в режиме короткого замыкания (пус­ка), рассчитанные по паспортным данным двигателей серий 4А (кри­вая 2), и МТК (кривая 1) для различ­ных скоростей вращения. Приближенно для серии двигателей 4А с короткозамкнутым ротором можно принять cosφп = 0,3...0,5, а для АД серий MTF и МТН cosφп = 0,6... 0,7.

В [1] приведен также метод расче­та добавочного резистора, включае­мого в одну фазу статора (несим­метричная схема), с целью получения заданных пусковых тока и момента.

Рис. 69. Графики зависимостей коэффициента мощности асинхронных двигателей от их номинальной мощности в режиме короткого замыкания

Расчет резисторов в цепи рото­ра. Обычно требуется определить сопротивление дополнительного резистора R, при включении ко­торого АД будет иметь заданную искусственную характеристику или же она будет проходить через заданную точку с координатами (Ωи, Ми). При этом предполагается, что естественная механическая характеристика АД известна (рассчитана или снята эксперименталь­но), а требуемая искусственная характеристика задана по условиям пуска или регулирования скорости.

Расчет сопротивления добавочного резистора R может быть вы­полнен несколькими способами в зависимости от формы задания требуемой искусственной механической характеристики.

Если искусственная характеристика задана полностью и опре­делена точка критического момента (например, характеристика 2 на рис. 68), то в этом случае расчет основывается на формуле (185), с помощью которой находится отношение критических скольже­ний АД на естественной 1 и искусственной 2 характеристиках:

sке/sки=R2/(R2+R2д1)=R2/(R2+R2д1) (194)

где R2 - сопротивление фазы обмотки ротора АД.

Из (194) определим искомое значение R2д1

R2д1= R2(sки /sке -1). (195)

Формула (195) справедлива не только для критического момен­та Мк, но и для любого фиксированного момента Ми. Таким обра­зом, если задана некоторая точка f искусственной характеристики 3 (см. рис. 68) с координатами Ми, sи то искомое сопротивление резистора R2д2 можно найти по формуле

R2д2= R2(sи /sе -1), (196)

где sе - скольжение АД на естественной характеристике 7, соответ­ствующее моменту Ми.

Отметим, что значение сопротивления обмотки ротора R2 можно найти приближенно по следующей формуле с использованием пас­портных данных АД:

(197)

Если искусственная характеристика задана своей рабочей час­тью, то для расчета резисторов можно использовать метод отрез­ков, который подробно рассматривался в гл. 4 применительно к ДПТ НВ. На рис. 68 выполнено такое построение, для чего прове­дена вертикальная линия, соответствующая номинальному моменту Мном, и отмечены характерные точки а, б, с, d, е. Тогда сопротив­ление искомого резистора R2д1 для получения характеристики 2

R2д2= R2ном аб/ае, (198)

где - номинальное сопротивление АД;

Е - ЭДС ротора при s = 1; I2 ном - номинальный ток ротора.

С помощью метода отрезков и рис. 68 при необходимости по естественной характеристике 1 можно найти и сопротивление фазы обмотки ротора

Rp=R2 номab/ae. (199)

Типовой задачей для ЭП с АД с фазным ротором является рас­чет резисторов в цепи ротора, обеспечивающих заданную пуско­вую диаграмму двигателя. Напомним, что пусковая диаграмма представляет собой совокупность нескольких искусственных меха­нических характеристик АД, которые используются при его пуске. Пусковая диаграмма АД обычно строится по аналогии с ДПТ НВ (см. разд. 4.5, рис. 25) в предположении, что рабочий участок меха­нических характеристик АД близок к линейному. При построении пусковой диаграммы АД момент М1, обычно принимается не более (0,8-0,9) Мк, а момент М2 должен составлять (1,1-1,2) Ме. Число характеристик (ступеней) пусковой диаграммы m и значения мо­ментов М1 и М2 связаны между собой следующим соотношением:

m = ℓg[l/(sномM*1)]/ ℓg(M1/M2), (200)

где M1/M2=λ- отношение максимального пускового момента (М1) к переключающему (М2);

sном - номинальное скольжение, о.е.;

M*1=М1/МN- отношение максимального пускового момента (М1) к номинальному (МN), о.е.

Расчет пусковых резисторов, обеспечивающих требуемую пус­ковую диаграмму, производится с помощью формул (196) или (198).

Задача 32 . Для АД типа 4A160S рассчитать сопротивление добавочного резистора R, включение которого в три фазы двигателя умень­шит пусковой ток в два раза (α = 0,5).

Паспортные данные двигателя 4А160S:

Рном=15 кВт; nном=1465 об/мин; I1ном=29,3 А; λм=Мк/Мном=2,3; λi=I1п/I1ном=7; рп=2; f=50 Гц; U1ном=380 В.

Определим пусковой ток АД при отсутствии резисторов в цепи статора: I1пе= λiI1ном =7•29,3 = 205 А.

Определим по формуле (158) полное сопротивление короткого замыкания:

zк =U1ном/(I1ном√3) = 380/(205•1,73) = 1,08 Ом.

Принимая по рис. 5.8 cosφп= 0,4, определим по (159) rк = zкcosφп = 1,08 • 0,4 = 0,43 Ом; и по (160) хк:

Теперь найдем по (161) искомое сопротивление:

Задача 33 . Для АД типа МТН-312-6 рассчитать добавоч­ное сопротивление R, при включении которого в цепь ротора механическая характеристика пройдет через точку с координатами Ω и = 0,6Ωном, Ми = 0,9Мном. Рассчитать и построить эту искусственную характеристику.

Паспортные данные двигателя МТН-312-6:

Рном=17,5 кВт; nном=945 об/мин; I1ном=43 А; λм=Мк/Мном=2,5; f=50 Гц; U1ном=380 В; k=2,66; Rc=0,34 Ом; х1=0,43 Ом; Rр=0,12 Ом; х2=0,25 Ом; рп=3.

Рассчитаем координаты заданной точки, используя координаты номиналь­ной точки:

Ω и = 0,6 Ω ном = 0,6•99 = 59,4 рад/с;

Ω ном=2πnном/60=2π945/60=99 рад/с;

Ω 0=2πf/рп=6,28•50/3=104,8 рад/с;

sи=(Ω 0- Ω и)/Ω 0=(104,8-59,4)/104,8=0,43,

Ми = 0,9Мном=0,9•117=159 Нм.

и нанесем ее на плоскость механических характеристик (см. рис. 5.5).

Для момента Ми = 159 Нм определим скольжение se при работе АД на есте­ственной характеристике 2, которое оказывается равным 0,06.

По формуле (165) определим требуемое добавочное сопротивление:

R= Rр(sи /sе -1)=0,89(0,43/0,06-1) = 5,5 Ом.

Критическое скольжение при включении добавочного сопротивления и ра­боте АД на искусственной характеристике 3 будет равно

а критический момент в соответствии с (152)(184) на искусственной характеристике не изменится и будет равен Мк = 442 Нм.

Подставляя sк, Мк и новое значение α= Rс/R2'= 0,34/6,39 = 0,05 в (154), получим следующую расчетную формулу для механической характеристики:

М = 2•442(1+0,05 • 2,83)/(s/2,83 + 2,83/s+2 • 0,05 • 2,83).

Задаваясь рядом значений скольжения s, определим скорость и момент АД и сведем расчетные данные в табл.12:

Таблица 12.Расчетные данные искусственной механической характеристики

s

0

0,43

0,6

0,8

1

2,83

Ω, рад/с

104,8

59,4

41,9

21

0

-192

М, Нм

0

159

194

246

291

442

Задача 34. Для АД типа 4A160S (см. задачу 32) рассчитать сопротивление резистора R включение которого в цепь статора обеспечивает снижение пус­кового момента на 20% (μ = 0,8).

Задача 35. Для АД типа МТН-312-6 (см. задачу 33) рассчитать сопротивле­ние R, включение которого в цепь ротора позволит получить пусковой мо­мент двигателя, равный критическому (максимальному).

Задача 36. Для АД типа МТН-312-6 (см. задачу 33) построить пусковую диаграмму и рассчитать сопротивление пусковых резисторов в цепи ротора, обеспечивающих пуск АД в две ступени (m = 2) при Мс=Мном. Рабочий участок механических характеристик АД принять линейным.

Вопросы для самоконтроля

  1. Дайте пояснения принципу работы АД и приведите схему замещения его.

  2. Приведите выражения энергетических показателей работы АД.

  3. Нарисуйте механическую и электромеханическую характеристики АД.

  4. Перечислите возможные способы регулирования скорости вращения АД.

  5. Дайте пояснения способу регулирования скорости вращения АД с помощью добавочных резисторов, включаемых в цепь обмотки статора, приведите механические характеристики АД при реализации этого способа.

  6. Дайте пояснения способу регулирования скорости вращения АД с помощью добавочных резисторов, включаемых в цепь обмотки ротора, приведите механические характеристики АД при реализации этого способа.

  7. Приведите методику расчета величины добавочных резисторов в цепи обмотки статора.