
- •Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»
- •М29 а.А. Мартынов. Электрический привод.: Учеб. Пособие/ а.А.Мартынов. СПб.: сПбГуап, 2013. 426 с.: ил.
- •1. Основные определения и параметры электропривода
- •1.1. Краткая классификация электроприводов
- •1.2. Основные технические параметры эп
- •1.3. Основные требования, предъявляемые к автоматизированным эп малой и средней мощности, предназначенных для мехатронных и робототехнических систем
- •Требования к системам защиты. Эп должны быть снабжены аппаратурой защиты, сигнализации и индикации рабочих и аварийных режимов. Эп должны иметь следующие виды защит от:
- •2. Основные уравнения и характеристики электропривода
- •2.1. Уравнения динамики электропривода как электромеханической системы
- •2.2. Полные уравнения движения электропривода [1]
- •2.3. Расчетные схемы механической части электропривода. Одномассовая расчетная схема
- •2.4. Многомассовые расчетные схемы
- •2.5. Установившееся движение электропривода и его устойчивость [1]
- •2.6. Неустановившееся движение электропривода при постоянном динамическом моменте
- •2.7. Неустановившееся движение при линейных механических характеристиках двигателя и исполнительного органа [1]
- •Регулирование координат электропривода [1]
- •3.1. Регулирование скорости
- •3.2. Регулирование момента и тока
- •3.3. Регулирование положения
- •4. Электроприводы с двигателями постоянного тока
- •4.1. Схема включения и статические характеристики двигателя постоянного тока независимого возбуждения
- •4.2. Режимы торможения, холостого хода и короткого замыкания двигателя постоянного тока независимого возбуждения [1]
- •4.3. Регулирование скорости двигателя постоянного тока независимого возбуждения с помощью резисторов в цепи якоря [1]
- •4.4. Расчет регулировочных резисторов в цепи обмотки якоря
- •4.5. Регулирование тока и момента при пуске, торможении и реверсе [1]
- •4.6. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока
- •4.7. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением напряжения якоря
- •4.8. Схема включения, статические характеристики двигателя постоянного тока последовательного возбуждения [1]
- •4.9. Регулирование координат электропривода с двигателем постоянного тока последовательного возбуждения с помощью резисторов [1]
- •Переходные процессы пуска двигателя постоянного тока независимого возбуждения и передаточные функции
- •5.1. Аналитический метод исследования переходных процессов электропривода на базе математической модели двигателя постоянного тока
- •5.2. Передаточные функции двигателя постоянного тока с независимым возбуждением
- •5.3. Регулировочная характеристика управляемого выпрямителя при различных формах кривой опорного напряжения [11]
- •5.4. Передаточная функция управляемого выпрямителя (без учета слаживающего фильтра в цепи постоянного тока) [11]
- •Электроприводы с асинхронным двигателем
- •6.1. Схема замещения, статические характеристики и режимы работы асинхронного двигателя
- •6.2. Регулирование скорости вращения асинхронного двигателя с помощью резисторов [1]
- •Регулирование координат электропривода с асинхронным двигателем изменением напряжения обмотки статора
- •6.4. Передаточная функция асинхронного двигателя при управлении по каналу напряжения обмотки статора
- •6.5. Замкнутая по скорости система асинхронного электропривода с трн
- •6.6. Регулирование скорости вращения асинхронного двигателя изменением частоты питающего напряжения
- •6.7. Передаточная функция асинхронного двигателя при управлении по каналу частоты
- •6.8. Регулирование скорости асинхронного двигателя изменением числа пар полюсов [1]
- •6.9. Регулирование скорости асинхронного двигателя в каскадных схемах его включения
- •6.10. Импульсный способ регулирования скорости асинхронного эп [1]
- •6.11. Способы торможения асинхронного двигателя
- •6.12. Электропривод с линейным асинхронным двигателем [1]
- •7. Преобразователи частоты для асинхронного электропривода [12]
- •7.1. Преобразователи частоты со звеном постоянного тока
- •7.2.Преобразователи частоты без звена постоянного тока
- •7.4. Влияние параметров ад и пч на устойчивость работы асинхронного эп
- •Выбор и проверка двигателей на нагрев
- •8.1.Расчет мощности и выбор двигателей
- •8.2. Проверка двигателей по нагреву прямым методом
- •8.3. Проверка двигателей по нагреву косвенным методом
- •9.Релейно-контакторные системы электроприводов
- •9.1. Типовые узлы и схемы управления электроприводов с двигателями постоянного тока
- •9.2. Типовые узлы и схемы управления электроприводов с асинхронными двигателями
- •9.3. Выбор аппаратов коммутации, управления и защиты
- •9.4. Электромагнитные муфты и тормозные устройств
- •10. Электропривод с синхронным двигателем
- •10.1. Схемы включения, статические характеристики и режимы работы синхронного двигателя
- •10.2. Пусковые и установившиеся режимы работы синхронного двигателя
- •11. Электроприводы с вентильным, вентильно-индукторным и шаговым двигателями
- •11.1. Электропривод с вентильным двигателем [9]
- •3. Дпр с фотоэлектронными элементами.
- •11.2. Электропривод с вентильно-индукторным двигателем
- •Достоинства и недостатки вид
- •11.3. Электропривод с шаговым двигателем [9]
- •12. Замкнутые схемы управления электроприводов
- •12.1. Системы подчиненного регулирования
- •12.2. Технические средства замкнутых схем управления электропривода
- •12.3.Микропроцессорные средства управления электропривода
- •Установившиеся режимы стабилизации скорости вращения электропривода постоянного тока
- •13.1. Эп постоянного тока с отрицательной обратной связью по напряжению
- •13.2.Эп с отрицательной обратной связью по скорости двигателя
- •13.3. Эп с положительной обратной связью (пос) по току якоря двигателя
- •13.5.Эп с отрицательной обратной связью по скорости и положительной обратной связью по току якоря
- •13.6. Двухконтурная система подчиненного регулирования с пропорциональным регулятором скорости
- •13.7. Ограничение уровня сигналов управления
- •13.8.Упреждающее токоограничение
- •14. Следящий электропривод
- •14.1. Измерители рассогласования положения
- •14.2.Типы следящих электроприводов
- •14.3.Техническое задание и основные этапы проектирования следящего эп
- •15. Электроприводы с программным и адаптивным управлением
- •15.1. Электроприводы с нечисловыми (цикловыми) программными устройствами
- •15.2. Электропривод с числовым программным управлением (чпу)
- •15.3.Ограничение ускорения при программном управлении эп
- •15.4.Электропривод с адаптивным управлением
- •16. Надежность электрического привода
- •16.1.Основные определения теории надежности
- •16.2. Количественные характеристики надежности
- •16.3.Надежность систем из последовательно и параллельно соединенных элементов
- •16.4.Порядок расчета надежности коэффициентным методом
- •17. Справочные данные по электрическим двигателям постоянного тока
4.6. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока
Изменение магнитного потока используется преимущественно для регулирования скорости. Этот способ находит широкое применение в ЭП вследствие простоты его реализации и экономичности, так как регулирование осуществляется в относительно маломощной цепи возбуждения двигателя и не сопровождается большими потерями мощности [1].
Магнитный поток при регулировании скорости обычно уменьшают по сравнению с номинальным (точка А на кривой намагничивания, рис. 26) за счет снижения тока возбуждения, так как его увеличение выше номинального вызывает дополнительный нагрев обмотки возбуждения. Кроме того, двигатель рассчитывается и конструируется таким образом, что бы его магнитная система была близка к насыщению, поэтому увеличение тока возбуждения не приводит к заметному увеличению магнитного потока.
Рис.26. Кривая намагничивания двигателя постоянного тока
Рис. 27. Схема регулирования тока возбуждения ДПТ НВ включением в цепь обмотки возбуждения резистора (а) и с управляемого выпрямителя (УВ) (б)
Регулирование тока в цепи возбуждения может осуществляться или с помощью добавочного резистора Rв (рис. 27, а), или изменением напряжения питания обмотки возбуждения, например с помощью управляемого выпрямителя УВ (см. рис. 27, б), выходное напряжение которого Uв регулируется по сигналу управления Uу. Вторая схема применяется для регулирования в широких пределах тока возбуждения мощных двигателей, работающих в замкнутых структурах ЭП. При использовании в ней реверсивных управляемых выпрямителей обеспечивается также изменение направления тока возбуждения.
В соответствии с (69) уменьшение магнитного потока приводит к увеличению скорости идеального холостого хода Ω0. Ток короткого замыкания Iкз = U/Rя от магнитного потока не зависит и при его варьировании будет оставаться неизменным. Таким образом, электромеханические характеристики при различных значениях магнитного потока Фном> Ф1> Ф2 будут иметь вид прямых 1-3 ДПТ НВ представленных на рис. 28, а.
Момент короткого замыкания Мкз= СеФIкз, т.е. при уменьшении магнитного потока Ф он будет также снижаться, так как Iкз= const. Значит, механические характеристики двигателя будут иметь вид прямых, показанных на рис. 28, б.
Показатели данного способа регулирования скорости ДПТ НВ следующие: диапазон регулирования 3 – 4; направление регулирования – вверх от естественной характеристики; плавность регулирования определяется плавностью регулирования тока возбуждения; стабильность скорости достаточно высокая, хотя она и снижается при уменьшении магнитного потока. Способ экономичен, так как регулирование скорости не сопровождается значительными потерями мощности, а реализация его не требует больших капитальных затрат.
Рис.28. Характеристики электромеханические (а) и механические (б) ДПТ НВ при ослаблении потока возбуждения
Допустимую нагрузку ДПТ при его работе на искусственных характеристиках определим по (67), полагая I = Iном:
Мдоп = CeФиI, (91)
где Фи – магнитный поток на искусственной характеристике.
Так как при данном способе регулирования Фи< Фном, то и Мдоп< Мном, т. е. двигатель по условиям нагрева не может быть нагружен на искусственных характеристиках номинальным моментом.
Для определения допустимой нагрузки двигателя сделаем дополнительный расчет. Запишем выражения для ЭДС якоря на естественной Ее и искусственной Еи характеристиках при номинальном токе:
Ее =СеФном Ωном = Uном - Iном Rя;
Еи = СеФиΩи = Uном - Iном Rя.
Так как Uном - IномRя = const, то из равенства Ее=Еи вытекает следующее соотношение:
Фи = Фном Ωном /Ωи, (92)
где Ωи – скорость на искусственной характеристике при I =Iном. Подставляя (92) в (91), получаем
Мдоп Ωи = Мном Ωном = Рном = const. (93)
Как видно из (93), при работе двигателя на искусственных характеристиках он может быть нагружен на свою номинальную мощность. Объясняется это тем, что хотя момент нагрузки при уменьшении магнитного потока снижается, но одновременно повышается скорость двигателя, а их произведение, определяющее механическую мощность, остается неизменным и равным номинальной мощности. Таким образом, регулирование скорости изменением магнитного потока целесообразно при постоянной механической мощности нагрузки, что обеспечивает полное его использование при работе на всех искусственных характеристиках.
Задача 24. Паспортные данные ДПТ НВ приведены в задаче 17. Определить магнитный поток и ток возбуждения, при которых искусственная механическая характеристика пройдет через точку с координатами Ωи = 250 рад/с, Ми = 15 Нм.
Решая (69) с учетом того, что R = Rя и U= Uном, получим
Ωи (СеФ)2-Uном СеФ + Ми Rя = 0.
Решая это уравнение второго порядка, получим:
СеФи1= 0,85 Вс; СеФи2= 0,027 Вс.
Целесообразно выбрать большее из двух полученных значений, так как в этом случае момент двигателя Ми обеспечивается при меньшем токе якоря.
Для определения тока возбуждения Iв. и рассчитаем относительное значение найденного магнитного потока:
(СеФи1)/(СеФном) = Фи*= 0,85/1,3 = 0,61, зная который, с помощью кривой намагничивания (см. рис. 25) определим относительный ток возбуждения
Iв. и* =Iв. и/ Iв. ном= 0,38,
а искомый ток возбуждения
Iв.и= Iв.ном ·Iв.и* =0,8 ·0,38 = 0,3 А.
Задача 25. Для рассмотренного в задаче 17 ДПТ НВ определить магнитный поток, ток возбуждения и сопротивление добавочного резистора в цепи обмотки возбуждения, при которых скорость идеального холостого хода на искусственной характеристике будет на 75% больше скорости холостого хода на естественной характеристике.
Вопросы для самоконтроля
1.Укажите достоинства и недостатки способа регулирования скорости вращения ДПТ НВ, реализуемого путем изменения потока возбуждения.
2. Нарисуйте электромеханические и механические характеристики ДПТ НВ при трех значениях магнитного потока.