- •1. Понятие множеств. Элементы множества. Обозначение множеств. Пустое множество.
- •2. Конечные и бесконечные множества.
- •3. Равенство множеств. Подмножества. Способы задания множеств.
- •4. Числовые множества.
- •5. Пересечение множеств. Свойства.
- •6. Объединение множеств. Свойства
- •7. Разность множеств. Свойства.
- •17. Понятие функции одной переменной. Область определения и область значения функции. Основные свойства функции одной переменной. Понятие сложной функции. Обратная функция.
- •18. Правила дифференцирования функции. Таблица производных элементарных функций.
- •19. Производная сложной и степенно-показательной функции.
- •20.Достаточное условие возрастания (убывания) функции.
- •21. Определение экстремума функции одной переменной. Необходимое и достаточное условие существования экстремума. Необходимое условие экстремума
- •Достаточное условие экстремума
- •1) Первое достаточное условие:
- •2) Второе достаточное условие
- •3) Третье достаточное условие
- •Абсолютный экстремум
- •22. Выпуклость вверх (вниз) функции. Достаточное условие выпуклости вверх (вниз) функции. Точки перегиба функции. Достаточное и необходимое условие существования точки перегиба.
- •23. Асимптомы к графику функции. Примеры.
- •24. Дифференциал функции одной переменной и его геометрический смысл. Применение дифференциала к приближенным вычислениям
- •Применение дифференциала в приближенных вычислениях
- •25.Производные высших порядков функции одной переменной. Примеры
- •26. Функция нескольких переменных. График функции 2-х переменных. Линии уровня функции 2-х переменных. Полное приращение и частные приращения функций 2-х переменных
- •27. Первообразная функция и неопределенный интерграл. Свойства неопределенного интеграла
- •28. Таблица неопределенных интегралов. Интегрирование с помощью тождественных преобразований и свойств неопределенного интеграла на примерах
- •3. Интегрирование заменой переменной
- •4. Интегрирование по частям
- •29. Интегрирование методом замены переменной. Примеры. Интегрирование по частям в неопределенном интеграле
- •Интегрирование по частям
- •30. Задача о площади криволинейной трапеции, приводящая к понятию определенного интеграла. Геометрический смысл интеграла. Вычисление площади плоской фигуры с помощью определенного интеграла
- •31. Свойства определенного интеграла. Теорема Ньютона-Лейбница
- •32. Несобственные интегралы 1-го рода. Примеры
- •33. Замена переменной в определенном интеграле. Формула интегрирования по частям для определенного интеграла. Примеры
28. Таблица неопределенных интегралов. Интегрирование с помощью тождественных преобразований и свойств неопределенного интеграла на примерах
Таблица первообразных (неопределенных интегралов)
Формулы из левого столбца таблицы называют основными первообразными. Формулы из правого столбца основными не являются, но очень часто используются при нахождении неопределенных интегралов. Их можно проверить дифференцированием.
1. Метод непосредственного интегрирования
Приведение к табличному виду или метод непосредственного интегрирования. С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов.
2. Внесение под знак дифференциала
В формуле неопределенного
интеграла величина
означает,
что берется дифференциал от переменной
.
Можно использовать некоторые свойства
дифференциала, чтобы, усложнив выражение
под знаком дифференциала, тем самым
упростить нахождение самого интеграла.
Для этого используется формула
Если нужная функция
отсутствует,
иногда ее можно образовать путем
алгебраических преобразований.
В общем виде справедливо равенство:
3. Интегрирование заменой переменной
Интегрирование
заменой переменной или методом
подстановки. Пусть
,
где функция
имеет
непрерывную производную
,
а между переменными
и
существует
взаимно однозначное соответствие. Тогда
справедливо равенство
Определенный интеграл зависит от переменной интегрирования, поэтому если выполнена замена переменных, то обязательно надо вернуться к первоначальной переменной интегрирования.
4. Интегрирование по частям
Интегрированием по частям называют интегрирование по формуле
При нахождении функции
по
ее дифференциалу
можно
брать любое значение постоянной
интегрирования
,
так как она в конечный результат не
входит. Поэтому для удобства будем
брать
.
Использование формулы интегрирования по частям целесообразно в тех случаях, когда дифференцирование упрощает один из сомножителей, в то время как интегрирование не усложняет другой.
29. Интегрирование методом замены переменной. Примеры. Интегрирование по частям в неопределенном интеграле
Интегрирование заменой переменной или методом подстановки. Пусть , где функция имеет непрерывную производную , а между переменными и существует взаимно однозначное соответствие. Тогда справедливо равенство
Определенный интеграл зависит от переменной интегрирования, поэтому если выполнена замена переменных, то обязательно надо вернуться к первоначальной переменной интегрирования.
Пример
Задание. Найти интеграл
Решение. Заменим знаменатель на переменную и приведем исходный интеграл к табличному.
Ответ.
Интегрирование по частям
Интегрированием по частям называют интегрирование по формуле
При нахождении функции по ее дифференциалу можно брать любое значение постоянной интегрирования , так как она в конечный результат не входит. Поэтому для удобства будем брать .
Использование формулы интегрирования по частям целесообразно в тех случаях, когда дифференцирование упрощает один из сомножителей, в то время как интегрирование не усложняет другой.
Пример
Задание. Найти интеграл
Решение. В исходном интеграле
выделим функции
и
,
затем выполним интегрирование по частям.
Ответ.
