- •Пояснительная записка
- •Unit 1. Electric current
- •Words to remember.
- •Read the text. Electric current
- •Give the Russian equivalents of the following expressions.
- •Are the following sentences True or False?
- •Answer the questions.
- •Complete the following sentences.
- •Render the text into English.
- •Unit 2. Electricity
- •Words to remember.
- •Read the text. Electricity
- •Answer the questions.
- •Are the following sentences True or False?
- •Render the text into English.
- •Give the summary of the text. Other generating sources
- •Discuss these questions in pairs.
- •Unit 3. Resistance
- •Words to remember.
- •Read the text. Resistance
- •Answer the questions.
- •Are the following sentences True or False?
- •Match the words with the meanings.
- •Render the text into English.
- •Give the summary of the text.
- •Discuss the questions or statements in pairs.
- •Unit 4. Magnetism and electromagnetism
- •Words to remember.
- •Read the text. Magnetism and electromagnetism
- •Answer the questions.
- •Are the following sentences True or False?
- •Render the text into English.
- •Give the summary of the text.
- •Match these words to their definitions.
- •Discuss the statements in pairs.
- •Unit 5. Inductance
- •Words to remember
- •Read the text and ask 6-8 questions.
- •Inductance
- •Are the following sentences True or False?
- •Render the text into English.
- •Give the summary of the text.
- •In pairs discuss the topics.
- •Unit 6 (part 1). Capacitors
- •Words to remember.
- •Read the text. Capacitors
- •Unit 6 (part 2). Capacitors
- •Read the text. Capacitors
- •Классификация конденсаторов
- •Unit 6 (part 3). Power capacitors
- •Words to remember.
- •Read the text. Power capacitors
- •Unit 7 (part 1). Conductors and insulators
- •Insulators and Conductors
- •Find English equivalents of the following words and word combinations in the text.
- •Give the Russian equivalents of the following expressions.
- •What answer is incorrect?
- •Answer the questions.
- •Unit 7 (part 2). Conductors and insulators
- •Words to remember.
- •Read the text. Suspension insulators
- •Give the Russian equivalents of the following expressions.
- •Match items in column a with items in column b.
- •Complete the table using information from the texts.
- •Unit 7 (part 3). Conductors and insulators
- •Words to remember.
- •Read the text. Conductors
- •Give the Russian equivalents of the following expressions.
- •Find English equivalents of the following sentences in the text.
- •Answer the questions.
- •Retell the text ‘Conductors’ using the following word combinations.
- •Unit 7 (part 4). Conductors and insulators
- •Words to remember.
- •Read the text. Conductor coverings and connectors
- •Find English equivalents for the following words and word combinations in the text.
- •Give the Russian equivalents of the following expressions.
- •Explain the following terms.
- •Put the questions to each paragraph of the text. Unit 7 (part 5). Conductors and insulators
- •Words to remember.
- •Read the text. Porcelain Vs. Polymer
- •Answer the questions.
- •Complete the table and speak about polymer and porcelain.
- •Render the text into English.
- •Unit 8. Semiconductors
- •Words to remember.
- •Read the text and ask 6-8 questions. Semiconductors
- •Find English equivalents of the following words and word-combinations in the text.
- •Render the text into English.
- •Give the summary of the text.
- •In pairs discuss the topics.
- •Unit 9. Batteries
- •Words to remember.
- •Read the text. Batteries
- •Литиево-ионная батарея
- •Give the summary of the text. Categories and Types of Batteries
- •Unit 10. Amplifiers and oscillators
- •Words to remember.
- •Read the text. Amplifiers and oscillators
- •Match these words to their definitions.
- •Give the Russian equivalents of the following expressions.
- •Are the following sentences True or False?
- •Answer the questions.
- •Complete the following sentences.
- •Render the text into English.
- •Unit 11 (part 1). The distribution system
- •Words to remember.
- •Read the text. The distribution system
- •Unit 11 (part 2). Determining distribution voltages
- •Determining distribution voltages
- •Render the text into English.
- •Retell the text using the following words and word-combinations.
- •Unit 12 (part 1). The primary circuit
- •Words to remember.
- •Read the text. The primary circuit
- •Primary network
- •Unit 12 (part 2). Secondary circuits
- •Secondary circuits
- •Unit 13. Cogeneration
- •Cogeneration
- •Unit 14 (part 1). Motors
- •Dc motors
- •Give the Russian equivalents of the following expressions.
- •Find synonyms of the following words in the text.
- •Are the following sentences True or False?
- •Speak about dc motors.
- •Render the text into English.
- •Unit 14 (part 2). Ac motors
- •Words to remember.
- •Read the text. Ac motors
- •Give the Russian equivalents of the following expressions.
- •Find synonyms of the following words in the text.
- •Answer the questions.
- •Speak about ac motors. Unit 14 (part 3). Brushed dc motors
- •Words to remember.
- •Read the text. Brushed dc Motors
- •Match items in column a) with items in column b).
- •Put questions to the text. Motor types
- •Complete the table using the information from the text and speak about different types of motors using the table.
- •Give the summary of the text. The Development of Electric Motor
- •Unit 15. Extra high voltage alternators
- •Words to remember.
- •Read the text. Extra high voltage alternators
- •Give the Russian equivalents of the following expressions.
- •Are the following sentences True or False?
- •Answer the questions.
- •Complete the following sentences.
- •Render the text into English.
- •Unit 16. Indicating meters
- •Words to remember.
- •Read the text.
- •Indicating meters
- •Answer the questions.
- •Are the following sentences True or False?
- •Render the text into English.
- •Give the summary of the text.
- •Discuss the statement in pairs.
- •Unit 17 (part 1). Transformers
- •Words to remember.
- •Read the text. Transformers
- •Give the Russian equivalents of the following expressions.
- •Put all types of questions to the following sentence.
- •Are the following sentences True or False?
- •Make up the plan to the text and retell it.
- •Give the summary of the text.
- •Unit 17 (part 2). Transformers
- •Words to remember.
- •Read the text. How the transformer works
- •Answer the questions.
- •Complete the following sentences.
- •Retell the text. Unit 17 (part 3). Transformers
- •Words to remember.
- •Read the text. Transformer rating
- •Give the English equivalents of the following sentences.
- •Make up the plan to the text and retell it. Unit 17 (part 4). Transformers
- •Words to remember.
- •Read the text. Methods of Transformer Cooling
- •Unit 17 (part 5). Transformers
- •Distribution Transformers
- •Give the Russian equivalents of the following expressions.
- •Complete the sentences.
- •Render the text into English.
- •Unit 18. Fuse cutouts
- •Words to remember.
- •Read the text. Fuse cutouts
- •Give the English equivalents of the following expressions.
- •Speak about fuse cutouts. Unit 19. The tunnel diode
- •Words to remember.
- •Read the text. The tunnel diode
- •Match these words to their definitions.
- •Give the Russian equivalents of the following expressions.
- •Are the following sentences True or False?
- •Answer the questions.
- •Complete the following sentences.
- •Render the text into English.
- •Unit 20. Electrical filters
- •Words to remember.
- •Read the text. Electrical filters
- •Give the Russian equivalents of the following expressions.
- •Are the following sentences True or False?
- •Answer the questions.
- •Complete the following sentences.
- •Render the text into English.
- •Appendix a. University and faculty Nizhny Novgorod State Technical University
- •I. Agree or disagree with the following statements. Use the following expressions: You are right. You are wrong. You are mistaken. Give your reasons.
- •II. Ask your partner.
- •III. Ask your partner.
- •IV. Answer the following questions.
- •The Automation and Electrical Mechanics Department
- •Appendix b. Outstanding scientists
- •I. Read the texts. Outstanding Scientists
- •Georg Simon Ohm
- •James Joule
- •Benjamin Franklin
- •Hans Christian Orsted
- •Michael Faraday
- •Thomas Alva Edison
- •Nikola Tesla
- •James Watt
- •André-Marie Ampère
- •Georg Simon Ohm
- •Joseph Henry
- •Heinrich Rudolf Hertz
- •Marie Skłodowska Curie
- •William Thomson
- •James Clerk Maxwell
- •Lodygin
- •Yablochkov
- •II. Render the texts into English. Исаак Ньютон
- •Томас Алва Эдисон
- •Мария Склодовская–Кюри
- •Appendix c. Grammar references The Infinitive
- •Функции инфинитива
- •Структуры с инфинитивом The Complex Subject (сложное подлежащее)
- •Passive
- •The Complex Object (сложное дополнение)
- •I. Translate the sentences with Infinitive into Russian.
- •II. Translate the sentences into Russian paying attention to function of Infinitive.
- •III. Translate the sentences into English using different forms of the Infinitive.
- •Complex Subject with the Infinitive
- •I. Complete the sentences using the verb in brackets and translate.
- •II. Translate the sentences into English using Complex Subject with the Infinitive.
- •III. Put questions to the words given in bold type.
- •IV. Answer the questions using the verb in brackets.
- •V. Find the predicate in sentences. Determine the function of the Infinitive in sentences and translate them.
- •Complex Object with the Infinitive
- •I. Translate the following sentences form English into Russian.
- •II. Answer the question using the verb in brackets.
- •III. Translate from Russian into English.
- •The Participle (причастие)
- •The Absolute Participial Construction Независимый Причастный Оборот
- •I. Determine the function of the participle in sentences and translate them.
- •II. Translate the sentences into Russian paying attention to the Participle I and II.
- •IV. Translate the sentences from Russian into English.
- •V. Complete the sentences choosing the appropriate form of the Participle I or II in brackets.
- •VI. Translate the following sentences into Russian paying attention to the translation of Participle II with adverbs.
- •Absolute participle construction
- •I. Find the sentences with Absolute participle construction and translate them.
- •II. Translate the sentences into English.
- •III. Translate the sentences paying attention to the Absolute participle construction.
- •The Gerund (герундий)
- •Функции
- •I. Put the questions to the words given in bold type.
- •II. Translate the following sentences from Russian into English using Gerund.
- •III. Translate from English into Russian.
- •IV. Find the sentences with Gerund and Participle, determine the function and translate the sentences into Russian.
- •Revision Exercises
- •Appendix d. Writing a summary
- •Appendix e. Writing letters
- •I. Letter Layout
- •Components of a Letter
- •Sample of a formal letter and an envelope
- •1. Write the following dates which are placed below the sender’s address:
- •2. Correct mistakes in the following dates:
- •3. Complete the following by indicating the dates in the body of the Letter.
- •5. Correct the following letter layout:
- •II. Letters of Invitation task
- •Letter 1
- •Second International Conference on Synchrotron Radiation in Materials Science srms-2 October 31 – November 4, 2005 International Conference Center Kobe Hyogo Prefecture, Japan
- •Letter 3
- •International Conference on Vacuum Ultraviolet Radiation Physics
- •Letter 4
- •Letter 1
- •Letter 2
- •Letter 3
- •Letter 4
- •1. Write a letter in which you:
- •2. Write a letter in which you:
- •Letter 1
- •Letter 2
- •Letter 3
- •Letter 4
- •1. Write a letter in which you:
- •2. Write a letter in which you:
- •Read the samples and notice phrases and sentences that express a request.
- •Letter 4
- •Letter 5
- •Letter 1
- •Letter 2
- •Letter 3
- •Letter 4
- •1. Write a letter in which you:
- •2. Write a letter in which you:
- •1. Write a letter in which you:
- •2. Write a letter in which you:
- •IV. Letters of Inquiry
- •Letter 1
- •Letter 3
- •Letter 4
- •Tasks 1
- •Letter 1
- •Letter 1
- •1. Write a letter in which you:
- •2. Write a letter in which you:
- •1. Write a letter in which you:
- •2. Write a letter in which you:
- •3. Write a letter in which you:
- •Test on Letter-writing Situations
- •The curriculum vitae
- •The letter of application
- •Making a presentation
- •Appendix f. Supplementary texts Tesla coil
- •Superconductivity
- •Linear motors
- •Brushless dc electric motor
- •Coreless dc Motors
- •Classification of a.C. Motors
- •Synchronous motors
- •Asynchronous motors
- •Induction Motor : General Principle
- •Stepper motors
- •Magnetism
- •Sources of magnetism
- •Diamagnetism
- •Paramagnetism
- •Ferromagnetism
- •Magnetic domains
- •603950, Нижний Новгород, ул. Минина, 24.
- •Т.В. Захарченко, л.С. Исмакова, н.В. Соколова
- •Guide to electrical study
- •Учебное пособие по английскому языку для студентов II курса фаэ
Brushless dc electric motor
1. Design difference between brush and brushless DC motor
A brushless DC motor (BLDC) is a synchronous electric motor which is powered by direct-current electricity (DC) and which has an electronically controlled commutation system, instead of a mechanical commutation system based on brushes. In such motors, current and torque, voltage and rpm are linearly related.
In a conventional (brushed) DC motor, the brushes make mechanical contact with a set of electrical contacts on the rotor (called the commutator), forming an electrical circuit between the DC electrical source and the armature coil-windings. As the armature rotates on axis, the stationary brushes come into contact with different sections of the rotating commutator. The commutator and brush system form a set of electrical switches, each firing in sequence, such that electrical-power always flows through the armature coil closest to the stationary stator (permanent magnet).
In a BLDC motor, the electromagnets do not move; instead, the permanent magnets rotate and the armature remains static. This gets around the problem of how to transfer current to a moving armature. In order to do this, the brush-system/ commutator assembly is replaced by an electronic controller. The controller performs the same power distribution found in a brushed DC motor, but using a solid-state circuit rather than a commutator/brush system.
2. Comparison with brushed DC motors
Because of induction of the windings, power requirements, and temperature management some glue circuitry is necessary between digital controller and motor.
BLDC motors offer several advantages over brushed DC motors, including higher efficiency and reliability, reduced noise, longer lifetime (no brush erosion), elimination of ionizing sparks from the commutator, and overall reduction of electromagnetic interference (EMI). With no windings on the rotor, they are not subjected to centrifugal forces, and because the electromagnets are located around the perimeter, the electromagnets can be cooled by conduction to the motor casing, requiring no airflow inside the motor for cooling. This in turn means that the motor’s internals can be entirely enclosed and protected from dirt or other foreign matter. The maximum power that can be applied to a BLDC motor is exceptionally high, limited almost exclusively by heat, which can damage the magnets. BLDC’s main disadvantage is high cost, which arises from two issues. First, BLDC motors require complex electronic speed controllers to run. Brushed DC motors can be regulated by a comparatively trivial variable resistor (potentiometer or rheostat), which is inefficient but also satisfactory for cost-sensitive applications. Second, many practical uses have not been well developed in the commercial sector. For example, in the RC hobby scene, even commercial brushless motors are often hand-wound while brushed motors use armature coils which can be inexpensively machine-wound.
BLDC motors are considered to be more efficient than brushed DC motors. This means that for the same input power, a BLDC motor will convert more electrical power into mechanical power than a brushed motor, mostly due to the absence of friction of brushes. The enhanced efficiency is greatest in the no-load and low-load region of the motor’s performance curve. Under high mechanical loads, BLDC motors and high-quality brushed motors are comparable in efficiency.
3. Controller implementations
Because the controller must direct the rotor rotation, the controller needs some means of determining the rotor’s orientation/position (relative to the stator coils.) Some designs use Hall-effect sensors or a rotary encoder to directly measure the rotor’s position. Others measure the back EMF in the undriven coils to infer the rotor position, eliminating the need for separate Hall-effect sensors, and therefore are often called ‘sensorless’ controllers.
The controller contains 3 bi-directional drivers to drive high-current DC power, which are controlled by a logic circuit. Simple controllers employ comparators to determine when the output phase should be advanced, while more advanced controllers employ a microcontroller to manage acceleration, control speed and fine-tune efficiency. Controllers that sense rotor position based on back-EMF have extra challenges in initiating motion because no back-EMF is produced when the rotor is stationary. This is usually accomplished by beginning rotation from an arbitrary phase, and then skipping to the correct phase if it is found to be wrong. This can cause the motor to run briefly backwards, adding even more complexity to the startup sequence.
4. Variations on construction
BLDC motors can be constructed in several different physical configurations: in the ‘conventional’ (also known as ‘inrunner’) configuration, the permanent magnets are mounted on the spinning armature (rotor). Three stator windings surround the rotor. In the ‘outrunner’ configuration, the radial-relationship between the coils and magnets is reversed; the stator coils form the center (core) of the motor, while the permanent magnets spin on an overhanging rotor which surrounds the core. The flat type, used where there are space or shape limitations, uses stator and rotor plates, mounted face to face. Outrunners typically have more poles, set up in triplets to maintain the three groups of windings, and have a higher torque at low RPMs. In all BLDC motors, the stator-coils are stationary.
There are also two electrical configurations having to do with how the wires from the windings are connected to each other (not their physical shape or location). The delta configuration connects the three windings to each other in a triangle-like circuit, and power is applied at each of the connections. The wye (‘Y’-shaped) configuration, sometimes called a star winding, connects all of the windings to a central point (parallel circuits) and power is applied to the remaining end of each winding.
A motor with windings in delta configuration gives low torque at low rpm, but can give higher top rpm. Wye configuration gives high torque at low rpm, but not as high top rpm.
Although efficiency is greatly affected by the motor’s construction, the wye winding is normally more efficient. Delta-connected windings can allow high-frequency parasitic electrical currents to circulate entirely within the motor. A wye-connected winding does not contain a closed loop in which parasitic currents can flow, preventing such losses.
From a controller standpoint, the two styles of windings are treated exactly the same, although some less expensive controllers need to read voltage from the common center of the wye winding.
|
|
Spindle motor from a 3.5" floppy disk drive |
The poles on the stator of a two-phase BLDC motor. This is part of a computer cooling fan; the rotor has been removed |
5. Applications
BLDC motors can potentially be deployed in any area currently fulfilled by brushed DC motors. Cost and control complexity prevents BLDC motors from replacing brushed motors in most common areas of use. Nevertheless, BLDC motors have come to dominate many applications: Consumer devices such as computer hard drives , CD/DVD players, and PC cooling fans use BLDC motors almost exclusively. Low speed, low power brushless DC motors are used in direct-drive turntables . High power BLDC motors are found in electric vehicles, and some industrial machinery. These motors are essentially AC synchronous motors with permanent magnet rotors.
The Honda Civic hybrid car uses a BLDC motor to supplement the output of the internal combustion engine when the extra power is needed. It is also used to start the engine without a starter.
The Segway Scooter also used BLDC technology. A number of electric bicycles use BLDC motors that are sometimes built right into the wheel hub itself, with the stator fixed solidly to the axle and the magnets attached to and rotating with the wheel. The bicycle wheel hub is the motor. This type of electric bicycle also has a standard bicycle transmission with pedals, gears and chain that can be pedaled along with, or without, the use of the motor as need arises.
A BLDC motor power a micro remote-controlled airplane. The motor is connected to a microprocessor-controlled BLDC controller. This 5-gram motor produces more thrust than twice the weight of the entire plane. Being an outrunner, the rotor-can containing the magnets spins around the coil windings on the stator.
Recently, an increase in the popularity of electric-powered model aircraft has spurred demand for high-performance BLDC motors. Many hobbyists have begun salvaging BLDC motors from scrap CD/DVD-ROM drives, refurbishing them for use in radio controlled planes.
