
- •Validity and reliability
- •What is Reliability?
- •What is Validity?
- •Conclusion
- •What is External Validity?
- •Psychology and External Validity The Battle Lines are Drawn
- •Randomization in External Validity and Internal Validity
- •Work Cited
- •What is Internal Validity?
- •Internal Validity vs Construct Validity
- •How to Maintain High Confidence in Internal Validity?
- •Temporal Precedence
- •Establishing Causality through a Process of Elimination
- •Internal Validity - the Final Word
- •How is Content Validity Measured?
- •An Example of Low Content Validity
- •Face Validity - Some Examples
- •If Face Validity is so Weak, Why is it Used?
- •Bibliography
- •What is Construct Validity?
- •How to Measure Construct Variability?
- •Threats to Construct Validity
- •Hypothesis Guessing
- •Evaluation Apprehension
- •Researcher Expectancies and Bias
- •Poor Construct Definition
- •Construct Confounding
- •Interaction of Different Treatments
- •Unreliable Scores
- •Mono-Operation Bias
- •Mono-Method Bias
- •Don't Panic
- •Bibliography
- •Criterion Validity
- •Content Validity
- •Construct Validity
- •Tradition and Test Validity
- •Which Measure of Test Validity Should I Use?
- •Works Cited
- •An Example of Criterion Validity in Action
- •Criterion Validity in Real Life - The Million Dollar Question
- •Coca-Cola - The Cost of Neglecting Criterion Validity
- •Concurrent Validity - a Question of Timing
- •An Example of Concurrent Validity
- •The Weaknesses of Concurrent Validity
- •Bibliography
- •Predictive Validity and University Selection
- •Weaknesses of Predictive Validity
- •Reliability and Science
- •Reliability and Cold Fusion
- •Reliability and Statistics
- •The Definition of Reliability Vs. Validity
- •The Definition of Reliability - An Example
- •Testing Reliability for Social Sciences and Education
- •Test - Retest Method
- •Internal Consistency
- •Reliability - One of the Foundations of Science
- •Test-Retest Reliability and the Ravages of Time
- •Inter-rater Reliability
- •Interrater Reliability and the Olympics
- •An Example From Experience
- •Qualitative Assessments and Interrater Reliability
- •Guidelines and Experience
- •Bibliography
- •Internal Consistency Reliability
- •Split-Halves Test
- •Kuder-Richardson Test
- •Cronbach's Alpha Test
- •Summary
- •Instrument Reliability
- •Instruments in Research
- •Test of Stability
- •Test of Equivalence
- •Test of Internal Consistency
- •Reproducibility vs. Repeatability
- •The Process of Replicating Research
- •Reproducibility and Generalization - a Cautious Approach
- •Reproducibility is not Essential
- •Reproducibility - An Impossible Ideal?
- •Reproducibility and Specificity - a Geological Example
- •Reproducibility and Archaeology - The Absurdity of Creationism
- •Bibliography
- •Type I Error
- •Type II Error
- •Hypothesis Testing
- •Reason for Errors
- •Type I Error - Type II Error
- •How Does This Translate to Science Type I Error
- •Type II Error
- •Replication
- •Type III Errors
- •Conclusion
- •Examples of the Null Hypothesis
- •Significance Tests
- •Perceived Problems With the Null
- •Development of the Null
The Weaknesses of Concurrent Validity
Concurrent validity is regarded as a fairly weak type of validity and is rarely accepted on its own. The problem is that the benchmark test may have some inaccuracies and, if the new test shows a correlation, it merely shows that the new test contains the same problems.
For example, IQ tests are often criticized, because they are often used beyond the scope of the original intention and are not the strongest indicator of all round intelligence. Any new intelligence test that showed strong concurrent validity with IQ tests would, presumably, contain the same inherent weaknesses.
Despite this weakness, concurrent validity is a stalwart of education and employment testing, where it can be a good guide for new testing procedures. Ideally, researchers initially test concurrent validity and then follow up with a predictive validity based experiment, to give a strong foundation to their findings.
Bibliography
Craighead, W.E., & Nemeroff, C.B. (2004). The Concise Corsini Encyclopedia of Psychology and Behavioral Sciences (3rd Ed.).
Stevens, J.P. (2009). Applied Multivariate Statistics for the Social Sciences.Fifth Edition. New York: Routledge. Hoboken, NJ: John Wiley
Predictive Validity
Predictive validity involves testing a group of subjects for a certain construct, and then comparing them with results obtained at some point in the future.
Bottom of Form
It is an important sub-type of criterion validity, and is regarded as a stalwart of behavioral science, education and psychology.
Most educational and employment tests are used to predict future performance, so predictive validity is regarded as essential in these fields.
Predictive Validity and University Selection
The most common use for predictive validity is inherent in the process of selecting students for university. Most universities use high-school grade point averages to decide which students to accept, in an attempt to find the brightest and most dedicated students.
In this process, the basic assumption is that a high-school pupil with a high grade point average will achieve high grades at university.
Quite literally, there have been hundreds of studies testing the predictive validity of this approach. To achieve this, a researcher takes the grades achieved after the first year of studies, and compares them with the high school grade point averages.
A high correlation indicates that the selection procedure worked perfectly, a low correlation signifies that there is something wrong with the approach.
Most studies show that there is a strong correlation between the two, and the predictive validity of the method is high, although not perfect.
Intuitively, this seems logical; previously excellent students may well struggle with homesickness or decide to spend the first year drinking beer.
By contrast, underachieving college students often become dedicated, hard-working students in the relative freedom of the university environment.
Weaknesses of Predictive Validity
Predictive validity is regarded as a very strong measure of statistical validity, but it does contain a few weaknesses that statisticians and researchers need to take into consideration.
Predictive validity does not test all of the available data, and individuals who are not selected cannot, by definition, go on to produce a score on that particular criterion.
In the university selection example, this approach does not test the students who failed to attend university, due to low grades, personal preference or financial concerns. This leaves a hole in the data, and the predictive validity relies upon this incomplete data set, so the researchers must always make some assumptions.
If the students with the highest grade point averages score higher after their first year at university, and the students who just scraped in get the lowest, researchers assume that non-attendees would score lower still. This downwards extrapolation might be incorrect, but predictive validity has to incorporate such assumptions.
Despite this weakness, predictive validity is still regarded as an extremely powerful measure of statistical accuracy.
In many fields of research, it is regarded as the most important measure of quality, and researchers constantly seek ways to maintain high predictive validity.
The Definition of Reliability
The definition of reliability, as given in 'The Free Dictionary', is "Yielding the same or compatible results in different clinical experiments or statistical trials"
Bottom of Form
In normal language, we use the word reliable to mean that something is dependable and that it will give the same outcome every time. We might talk of a football player as reliable, meaning that he gives a good performance game after game.