
- •Цифровая обработка сигналов
- •Тема 1: фильтрация одномерных сигналов.
- •1.1. Введение.
- •1.2. Цифровые фильтры /л2,л24/.
- •1.2.6. Интегрирующий рекурсивный фильтр.
- •1.3. Импульсная реакция фильтров.
- •1.4. Передаточные функции фильтров /л7/.
- •1.5. Частотные характеристики фильтров /л2,л13,л24/.
- •1.6. Фильтрация случайных сигналов /л4,л15,л24/.
- •1.7. Структурные схемы цифровых фильтров /л8,л21/.
- •Тема 2: частотный анализ цифровых фильтров.
- •Введение.
- •2.1. Сглаживающие фильтры и фильтры аппроксимации /л24/.
- •2.2. Разностные операторы /л24/.
- •2.3. Интегрирование данных /л24/
- •2.4. Расчет фильтра по частотной характеристике.
- •Тема 3: весовые функции.
- •3.1. Явление Гиббса /л24/.
- •3.2. Весовые функции /л16/.
- •Тема 4: нерекурсивные частотные фильтры.
- •4.1. Общие сведения.
- •4.2. Идеальные частотные фильтры.
- •4.3. Конечные приближения идеальных фильтров /л24/.
- •4.4. Дифференцирующие цифровые фильтры.
- •4.5. Гладкие частотные фильтры /л24/.
- •Тема 5: рекурсивные фильтры
- •5.1. Принципы рекурсивной фильтрации.
- •5.2. Режекторные и селекторные фильтры.
- •5.3. Билинейное z-преобразование.
- •5.4. Типы рекурсивных частотных фильтров.
- •Тема 6: рекурсивные частотные фильтры
- •6.1. Низкочастотный фильтр Баттеруорта /л12,л24/.
- •6.2. Высокочастотный фильтр Баттеруорта /л12/.
- •6.3. Полосовой фильтр Баттеруорта /л12/.
- •6.4. Фильтры Чебышева /л12/.
- •6.4. Дополнительные сведения.
- •Тема 7: деконволюция сигналов
- •7.1. Понятие деконволюции.
- •7.2. Инверсия импульсного отклика фильтра.
- •7.3. Оптимальные фильтры деконволюции /л12,л22/.
- •7.4. Рекурсивная деконволюция /л22/.
- •7.5. Фильтры неполной деконволюции.
- •Тема 8: основы теории вероятностей случайных сигналов
- •8.1. Основные понятия теории вероятностей [л28,л29].
- •8.2. Вероятности случайных событий [л30,л28,л29].
- •8.3. Случайные величины [л30,л31,л2,л4,л15].
- •8.4. Системы случайных величины [л31,л2,л4,л15].
- •Тема 9: случайные сигналы
- •9.1. Случайные процессы и функции [л31,л2,л4].
- •9.2. Функции спектральной плотности [л31,л4,л32].
- •9.3. Преобразования случайных функций [л31,л2,л32].
- •9.4. Модели случайных сигналов и помех [л33,л4].
- •Тема 10: оптимальные линейные фильтры.
- •10.1. Модели случайных процессов и шумов /л12/.
- •10.2. Критерии построения оптимальных фильтров.
- •10.3. Фильтр Колмогорова-Винера.
- •10.4. Оптимальные фильтры сжатия сигналов.
- •10.5. Фильтры прогнозирования.
- •10.6. Фильтр обнаружения сигналов.
- •10.7. Энергетический фильтр.
- •Тема 11: адаптивная фильтрация данных
- •11.1. Введение.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.4. Статистическая группировка полезной информации.
- •Литература
2.3. Интегрирование данных /л24/
Интегрирование сигналов реализуется рекурсивными цифровыми фильтрами. Рассмотрим примеры анализа интегрирующих операторов.
Алгоритм интегрирования по формуле трапеций при нулевых начальных условиях:
yk+1 = yk+(sk+1+sk)/2. (2.3.1)
Принимая sk = exp(jt) и yk = H()exp(jt), подставляем сигналы в (2.3.1) при tk = kt, t = 1 и решаем относительно H(). Получаем:
H() = (exp(j)+1)/[2(exp(j)-1)].
H() = cos(/2)/[2j sin(/2)].
Истинное значение интеграла равно (1/j)exp(jt). Отсюда:
K() = H()exp(jt)/[(1/j)exp(jt)].
K() = cos(/2)[(/2)/sin(/2)]. (2.3.2)
Интегрирование по формуле прямоугольников (интерполяционное среднеточечное). Оператор:
yk+1 = yk+sk+1/2. (2.3.3)
После аналогичных подстановок сигнала и преобразований получаем:
K() = (/2)/sin(/2).
При численном интегрировании по формуле Симпсона уравнение фильтра имеет вид:
yk+1 = yk-1+(sk+1+4sk+sk-1)/3. (2.3.4)
Частотный анализ фильтра проведите самостоятельно. Контроль:
K() = (2+cos )/[3 sin()/].
Рис. 2.3.1. Коэффициенты
соответствия.
Наиболее простые формулы цифрового интегрирования, трапеций и прямоугольников, ведут себя различным образом в главном частотном диапазоне. Формула прямоугольников завышает результаты на высоких частотах, а формула трапеций - занижает. Эти особенности легко объяснимы. Для одиночной гармоники площадь трапеции по двум последовательным отсчетам всегда меньше, чем площадь с выпуклой дугой гармоники между этими отсчетами, и разница тем больше, чем больше частота. В пределе, для гармоники с частотой Найквиста, отсчеты соответствуют знакочередующемуся ряду (типа 1, -1, 1, -1, ... или любые другие значения в зависимости от амплитуды и начального фазового угла) и при нулевых начальных условиях суммирование двух последовательных отсчетов в формуле (3.2.1) будет давать 0 и накопления результатов не происходит. При интегрировании по площади прямоугольников с отчетом высоты по центральной точке между двумя отсчетами всегда ведет к завышению площади прямоугольника относительно площади, ограниченной выпуклой дугой гармоники.
Формула Симпсона отличается от формул трапеций и прямоугольников более высокой степенью касания единичного значения, что обеспечивает более высокую точность интегрирования в первой половине главного диапазона. Однако на высоких частотах погрешность начинает резко нарастать вплоть до выхода на бесконечность на конце диапазона (полюс в знаменателе передаточной функции рекурсивного фильтра на частоте Найквиста).
Эти особенности интегрирования следует учитывать при обработке данных сложного спектрального состава.
(!!!КР4- Разработка более точного оператора интегрирования и методики его расчета)