
- •Цифровая обработка сигналов
- •Тема 1: фильтрация одномерных сигналов.
- •1.1. Введение.
- •1.2. Цифровые фильтры /л2,л24/.
- •1.2.6. Интегрирующий рекурсивный фильтр.
- •1.3. Импульсная реакция фильтров.
- •1.4. Передаточные функции фильтров /л7/.
- •1.5. Частотные характеристики фильтров /л2,л13,л24/.
- •1.6. Фильтрация случайных сигналов /л4,л15,л24/.
- •1.7. Структурные схемы цифровых фильтров /л8,л21/.
- •Тема 2: частотный анализ цифровых фильтров.
- •Введение.
- •2.1. Сглаживающие фильтры и фильтры аппроксимации /л24/.
- •2.2. Разностные операторы /л24/.
- •2.3. Интегрирование данных /л24/
- •2.4. Расчет фильтра по частотной характеристике.
- •Тема 3: весовые функции.
- •3.1. Явление Гиббса /л24/.
- •3.2. Весовые функции /л16/.
- •Тема 4: нерекурсивные частотные фильтры.
- •4.1. Общие сведения.
- •4.2. Идеальные частотные фильтры.
- •4.3. Конечные приближения идеальных фильтров /л24/.
- •4.4. Дифференцирующие цифровые фильтры.
- •4.5. Гладкие частотные фильтры /л24/.
- •Тема 5: рекурсивные фильтры
- •5.1. Принципы рекурсивной фильтрации.
- •5.2. Режекторные и селекторные фильтры.
- •5.3. Билинейное z-преобразование.
- •5.4. Типы рекурсивных частотных фильтров.
- •Тема 6: рекурсивные частотные фильтры
- •6.1. Низкочастотный фильтр Баттеруорта /л12,л24/.
- •6.2. Высокочастотный фильтр Баттеруорта /л12/.
- •6.3. Полосовой фильтр Баттеруорта /л12/.
- •6.4. Фильтры Чебышева /л12/.
- •6.4. Дополнительные сведения.
- •Тема 7: деконволюция сигналов
- •7.1. Понятие деконволюции.
- •7.2. Инверсия импульсного отклика фильтра.
- •7.3. Оптимальные фильтры деконволюции /л12,л22/.
- •7.4. Рекурсивная деконволюция /л22/.
- •7.5. Фильтры неполной деконволюции.
- •Тема 8: основы теории вероятностей случайных сигналов
- •8.1. Основные понятия теории вероятностей [л28,л29].
- •8.2. Вероятности случайных событий [л30,л28,л29].
- •8.3. Случайные величины [л30,л31,л2,л4,л15].
- •8.4. Системы случайных величины [л31,л2,л4,л15].
- •Тема 9: случайные сигналы
- •9.1. Случайные процессы и функции [л31,л2,л4].
- •9.2. Функции спектральной плотности [л31,л4,л32].
- •9.3. Преобразования случайных функций [л31,л2,л32].
- •9.4. Модели случайных сигналов и помех [л33,л4].
- •Тема 10: оптимальные линейные фильтры.
- •10.1. Модели случайных процессов и шумов /л12/.
- •10.2. Критерии построения оптимальных фильтров.
- •10.3. Фильтр Колмогорова-Винера.
- •10.4. Оптимальные фильтры сжатия сигналов.
- •10.5. Фильтры прогнозирования.
- •10.6. Фильтр обнаружения сигналов.
- •10.7. Энергетический фильтр.
- •Тема 11: адаптивная фильтрация данных
- •11.1. Введение.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.4. Статистическая группировка полезной информации.
- •Литература
Тема 10: оптимальные линейные фильтры.
Как много дел считалось невозможными, пока они не были осуществлены.
Гай Плиний Секунд (философ).
Специалисты в науке подобны старателям. Стоит одному найти крупинку золота, как другие выроют в этом месте котлован. А тема оптимальности, это вообще золотое Эльдорадо, можно копать в любом направлении.
Володя Старцев (Геофизик).
Содержание: 10.1. Модели случайных процессов и шумов. Белый шум. Фильтрация белого шума. 10.2. Критерии построения оптимальных фильтров. Среднее квадратическое отклонение. Амплитудное отношение сигнал/шум. Энергетическое отношение сигнал/шум. 10.3. Фильтр Колмогорова-Винера. Условие оптимальности фильтра. Система линейных уравнений фильтра. Частотная характеристика фильтра. Эффективность фильтра. 10.4. Оптимальные фильтры сжатия сигналов. Частотная характеристика. Условие оптимальности. 10.5. Фильтр прогнозирования. 10.6. Фильтр обнаружения сигналов. Частотная характеристика. Система линейных уравнений. Эффективность фильтра. Согласованный фильтр. Обратный фильтр. 10.7. Энергетический фильтр. Критерий оптимальности. Расчет векторов операторов фильтров. Литература.
10.1. Модели случайных процессов и шумов /л12/.
Результаты практических измерений, подлежащие обработке, содержат определенный полезный сигнал на фоне различного рода помех (шумов), при этом спектр помех в общем случае недетерминирован и в той или иной мере представлен по всему интервалу главного частотного диапазона. Другими словами, спектр полезного сигнала наложен на спектр шумов. В этих условиях ставится задача реализации так называемых оптимальных фильтров, которые, в зависимости от своего конкретного назначения, позволяют достаточно надежно производить обнаружение сигнала, наилучшим образом выделять сигнал на фоне помех или в максимальной степени подавить помехи без существенного искажения сигнала.
Случайные процессы и шумы описываются функциями автокорреляции и спектрами мощности. Модели случайных процессов (сигналов) с заданными статистическими характеристиками обычно получают фильтрацией белого шума.
Белый шум q(t) можно представлять как случайную по времени (аргументу) последовательность дельта - импульсов (ti) со случайными амплитудными значениями ai:
q(t) = i ai(t-ti), (10.1.1)
которая удовлетворяет условиям статистической однородности: постоянное среднее число импульсов в единицу времени и статистическая независимость появления каждого импульса от предыдущих. Такой поток импульсов, который называют пуассоновским, является некоррелированным и имеет равномерный спектр мощности:
Rq() = c2(t), Wq() = c2,
где с2 = Na2, N - число импульсов на интервале Т реализации случайного процесса, a2 -дисперсия амплитуд импульсов.
Фильтрация белого шума. Если на входе фильтра с импульсным откликом h(t) действует белый шум q(t), то сигнал на выходе фильтра:
g(t) = h(t) * q(t) = h(t) * ai(t-ti) = ai h(t-ti), (10.1.2)
т.е. выходной сигнал будет представлять собой последовательность сигналов импульсной реакции фильтра h(t) с амплитудой ai, при этом автокорреляционная функция и спектр мощности выходного потока также становятся подобными ФАК и спектру мощности импульсной реакции фильтра и в первом приближении определяются выражениями:
Rg()
N
a2 Rh()
= c2 Rh(),
(10.1.3)
Wg() N a2 |H()|2 = c2 |H()|2. (10.1.4)
Этот результат известен как теорема Кэмпбелла.