
- •Цифровая обработка сигналов
- •Тема 1: фильтрация одномерных сигналов.
- •1.1. Введение.
- •1.2. Цифровые фильтры /л2,л24/.
- •1.2.6. Интегрирующий рекурсивный фильтр.
- •1.3. Импульсная реакция фильтров.
- •1.4. Передаточные функции фильтров /л7/.
- •1.5. Частотные характеристики фильтров /л2,л13,л24/.
- •1.6. Фильтрация случайных сигналов /л4,л15,л24/.
- •1.7. Структурные схемы цифровых фильтров /л8,л21/.
- •Тема 2: частотный анализ цифровых фильтров.
- •Введение.
- •2.1. Сглаживающие фильтры и фильтры аппроксимации /л24/.
- •2.2. Разностные операторы /л24/.
- •2.3. Интегрирование данных /л24/
- •2.4. Расчет фильтра по частотной характеристике.
- •Тема 3: весовые функции.
- •3.1. Явление Гиббса /л24/.
- •3.2. Весовые функции /л16/.
- •Тема 4: нерекурсивные частотные фильтры.
- •4.1. Общие сведения.
- •4.2. Идеальные частотные фильтры.
- •4.3. Конечные приближения идеальных фильтров /л24/.
- •4.4. Дифференцирующие цифровые фильтры.
- •4.5. Гладкие частотные фильтры /л24/.
- •Тема 5: рекурсивные фильтры
- •5.1. Принципы рекурсивной фильтрации.
- •5.2. Режекторные и селекторные фильтры.
- •5.3. Билинейное z-преобразование.
- •5.4. Типы рекурсивных частотных фильтров.
- •Тема 6: рекурсивные частотные фильтры
- •6.1. Низкочастотный фильтр Баттеруорта /л12,л24/.
- •6.2. Высокочастотный фильтр Баттеруорта /л12/.
- •6.3. Полосовой фильтр Баттеруорта /л12/.
- •6.4. Фильтры Чебышева /л12/.
- •6.4. Дополнительные сведения.
- •Тема 7: деконволюция сигналов
- •7.1. Понятие деконволюции.
- •7.2. Инверсия импульсного отклика фильтра.
- •7.3. Оптимальные фильтры деконволюции /л12,л22/.
- •7.4. Рекурсивная деконволюция /л22/.
- •7.5. Фильтры неполной деконволюции.
- •Тема 8: основы теории вероятностей случайных сигналов
- •8.1. Основные понятия теории вероятностей [л28,л29].
- •8.2. Вероятности случайных событий [л30,л28,л29].
- •8.3. Случайные величины [л30,л31,л2,л4,л15].
- •8.4. Системы случайных величины [л31,л2,л4,л15].
- •Тема 9: случайные сигналы
- •9.1. Случайные процессы и функции [л31,л2,л4].
- •9.2. Функции спектральной плотности [л31,л4,л32].
- •9.3. Преобразования случайных функций [л31,л2,л32].
- •9.4. Модели случайных сигналов и помех [л33,л4].
- •Тема 10: оптимальные линейные фильтры.
- •10.1. Модели случайных процессов и шумов /л12/.
- •10.2. Критерии построения оптимальных фильтров.
- •10.3. Фильтр Колмогорова-Винера.
- •10.4. Оптимальные фильтры сжатия сигналов.
- •10.5. Фильтры прогнозирования.
- •10.6. Фильтр обнаружения сигналов.
- •10.7. Энергетический фильтр.
- •Тема 11: адаптивная фильтрация данных
- •11.1. Введение.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.4. Статистическая группировка полезной информации.
- •Литература
7.4. Рекурсивная деконволюция /л22/.
Запишем уравнение (7.1.3) для инверсного фильтра в развернутой форме:
H-1(z) = 1/(h0+h1z+h2z2+ ...). (7.4.1)
Так как для минимально-фазового оператора всегда выполняется условие h0 0, приведем (7.4.1) к виду:
H-1(z) = (1/h0)/(1+h1z/h0+h2z2/h0+...) = G/(1+q1z+q2z2+ ...), (7.4.2)
где: G = 1/h0, q1 = h1/h0, q2 = h2/h0 и т.д. Но уравнение (7.4.2) есть не что иное, как уравнение передаточной функции рекурсивного фильтра, где цепь обратной связи образована коэффициентами нормированного оператора h(n). Алгоритм вычислений:
yk = G·xk – qn·yk-n.
Выражение (7.4.2) уникально по своим возможностям. В принципе, оно может реализовать оператор инверсной фильтрации с бесконечным импульсным откликом. На практике оно может использоваться вместо медленно затухающих инверсных операторов, модуль одного из полюсов которого очень близок к 1 (менее 1.1) при высоких требованиях к метрике приближения.
Пример рекурсивной деконволюции.
Рис.7.4.1.
1. Модуль одного из корней фильтра равен 1.032, что приводит к очень слабому затуханию инверсного оператора. Метрика приближения даже при N=100 для усеченного оператора составляет 0.3. Форма операторов приведена на рис. 7.4.1.
Рис.7.4.2.
3. Расчет коэффициентов фильтра рекурсивной деконволюции:
- G = 1/ho = 2.441
- gn = hn·G. gn = {1.932, 0.978, -0.472, -0.896, -0.405, 0.077, 0.165, 0.065, -0.003}, n=1,2,3,…,9.
Рис. 7.4.3.
7.5. Фильтры неполной деконволюции.
Рассмотренные выше методы относятся к расчету так называемых идеальных инверсных фильтров, т.е. фильтров полной прямой инверсии системных операторов. Однако использование идеальных инверсных фильтров на практике не всегда возможно, т.к. регистрируемые данные обычно осложнены влиянием помех (шумов), а инверсные фильтры обычно имеют коэффициент усиления шумов значительно больше 1. В этом случае задача точной деконволюции (восстановления истинной первоначальной формы сигнала), как правило, не ставится, и инверсные фильтры считаются оптимальными с точки зрения максимального приближения к форме полезного сигнала с определенным допустимым коэффициентом усиления дисперсии помех. Такие фильтры называются фильтрами неполной (частичной, ограниченной) деконволюции. При проектировании фильтров неполной деконволюции учитываются статистические характеристики помех во входном сигнале и их соотношение со статистическими характеристиками самого входного сигнала. Передаточная функция фильтра неполной деконволюции с учетом помех во входном сигнале определяется выражением:
H-1(z) = H*(z)/[|H(z)|2+g2], (7.5.1)
где g2 = k·h2 - дисперсия шумов в единицах дисперсии оператора hn, h2 – дисперсия значений оператора hn, (при условии суммы значений оператора, равной 1), k - отношение дисперсии шумов к дисперсии оператора hn. Коэффициент g2 играет роль регуляризирующего фактора при выполнении операции деконволюции информации.
Рис. 7.5.1.
На рис. 7.5.2 приведена форма инверсных операторов, соответствующая их частотным характеристикам на рис. 7.5.1(В), и результаты свертки инверсных операторов с прямым (для лучшего просмотра графики прямой оператор при свертке сдвинут вправо на 2 значения t). При g=0 коэффициент усиления дисперсии шумов равен 11, при g=0.4h2 равен 4.6. Однако снижение усиления дисперсии шумов сопровождается увеличением погрешности приближения, что можно видеть на рис. 7.5.2(В), при этом уменьшается амплитуда восстановления импульса Кронекера и появляются осцилляции после импульса. Но при наличии шумов и правильном выборе параметра g общее отношение амплитудных значений сигнал/ шум для оператора по (7.5.1) больше, чем для прямой инверсии по (7.1.3), что объясняется более существенным уменьшением коэффициента усиления дисперсии шумов при увеличении параметра g, чем увеличением погрешности приближения.
Рис. 7.5.2.
аi = asi + bi, (7.5.2)
где asi и bi - функции автоковариации сигнала и помех. При помехе типа белого шума функция автоковариации помех представляет собой весовую дельта-функцию в точке 0:
bi = c2i, (7.5.3)
где с2- дисперсия помех. С учетом этого фактора расчет оптимальных инверсных фильтров может проводиться по вышеприведенным формулам (7.3.5, 7.3.9) с изменением значения коэффициента аo:
ao= ao + c2. (7.5.4)
Рис. 7.5.3.