
- •Цифровая обработка сигналов
- •Тема 1: фильтрация одномерных сигналов.
- •1.1. Введение.
- •1.2. Цифровые фильтры /л2,л24/.
- •1.2.6. Интегрирующий рекурсивный фильтр.
- •1.3. Импульсная реакция фильтров.
- •1.4. Передаточные функции фильтров /л7/.
- •1.5. Частотные характеристики фильтров /л2,л13,л24/.
- •1.6. Фильтрация случайных сигналов /л4,л15,л24/.
- •1.7. Структурные схемы цифровых фильтров /л8,л21/.
- •Тема 2: частотный анализ цифровых фильтров.
- •Введение.
- •2.1. Сглаживающие фильтры и фильтры аппроксимации /л24/.
- •2.2. Разностные операторы /л24/.
- •2.3. Интегрирование данных /л24/
- •2.4. Расчет фильтра по частотной характеристике.
- •Тема 3: весовые функции.
- •3.1. Явление Гиббса /л24/.
- •3.2. Весовые функции /л16/.
- •Тема 4: нерекурсивные частотные фильтры.
- •4.1. Общие сведения.
- •4.2. Идеальные частотные фильтры.
- •4.3. Конечные приближения идеальных фильтров /л24/.
- •4.4. Дифференцирующие цифровые фильтры.
- •4.5. Гладкие частотные фильтры /л24/.
- •Тема 5: рекурсивные фильтры
- •5.1. Принципы рекурсивной фильтрации.
- •5.2. Режекторные и селекторные фильтры.
- •5.3. Билинейное z-преобразование.
- •5.4. Типы рекурсивных частотных фильтров.
- •Тема 6: рекурсивные частотные фильтры
- •6.1. Низкочастотный фильтр Баттеруорта /л12,л24/.
- •6.2. Высокочастотный фильтр Баттеруорта /л12/.
- •6.3. Полосовой фильтр Баттеруорта /л12/.
- •6.4. Фильтры Чебышева /л12/.
- •6.4. Дополнительные сведения.
- •Тема 7: деконволюция сигналов
- •7.1. Понятие деконволюции.
- •7.2. Инверсия импульсного отклика фильтра.
- •7.3. Оптимальные фильтры деконволюции /л12,л22/.
- •7.4. Рекурсивная деконволюция /л22/.
- •7.5. Фильтры неполной деконволюции.
- •Тема 8: основы теории вероятностей случайных сигналов
- •8.1. Основные понятия теории вероятностей [л28,л29].
- •8.2. Вероятности случайных событий [л30,л28,л29].
- •8.3. Случайные величины [л30,л31,л2,л4,л15].
- •8.4. Системы случайных величины [л31,л2,л4,л15].
- •Тема 9: случайные сигналы
- •9.1. Случайные процессы и функции [л31,л2,л4].
- •9.2. Функции спектральной плотности [л31,л4,л32].
- •9.3. Преобразования случайных функций [л31,л2,л32].
- •9.4. Модели случайных сигналов и помех [л33,л4].
- •Тема 10: оптимальные линейные фильтры.
- •10.1. Модели случайных процессов и шумов /л12/.
- •10.2. Критерии построения оптимальных фильтров.
- •10.3. Фильтр Колмогорова-Винера.
- •10.4. Оптимальные фильтры сжатия сигналов.
- •10.5. Фильтры прогнозирования.
- •10.6. Фильтр обнаружения сигналов.
- •10.7. Энергетический фильтр.
- •Тема 11: адаптивная фильтрация данных
- •11.1. Введение.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.4. Статистическая группировка полезной информации.
- •Литература
4.5. Гладкие частотные фильтры /л24/.
В некоторых случаях (при последовательном соединении фильтров, при выделении сигналов на уровне сильных помех и т.п.) осцилляции на передаточных характеристиках фильтров являются весьма нежелательными даже при их малой остаточной величине.
Принцип синтеза фильтров. Очевидно, что фильтры с гладкой передаточной характеристикой можно получить только в том случае, если возможно разложение передаточной функции в конечный ряд Фурье.
Допустим, мы имеем симметричный НЦФ с передаточной функцией:
H()
= hо+ 2
hn
cos n.
(4.5.1)
Как известно, cos n равен полиному по cos степени n, при этом выражение (4.5.1) можно записать в виде:
H()
=
gn
(cos )n
=
gn
xn,
(4.5.2)
где переменная х=cos изменяется от -1 до 1 (поскольку изменяется от 0 до ). Преобразование переменной представляет собой нелинейное растяжение оси абсцисс с поворотом на 180o (по переменной х передаточные функции ФНЧ похожи на ФВЧ и наоборот) с выражением функции через степенной полином. Последнее примечательно тем, что синтез гладких функций на базе степенных полиномов затруднений не представляет.
Так, например, для конструирования ФНЧ в качестве исходной может быть принята степенная функция вида:
g(x)= (1+x)z (1-x)r, (4.5.3)
где z и r - параметры.
Рис. 4.5.1. Примеры
синтеза гладких фильтров.
Если функцию (4.5.3) проинтегрировать в пределах от -1 до х и пронормировать на значение интеграла от -1 до 1 , то будет получена гладкая передаточная характеристика низкочастотного фильтра (рисунке 4.5.1):
H(x)=
g(x)dx
/
g(x)dx.
(4.5.4)
Рис. 4.5.2. Схема
возврата к ряду Фурье.
В заключение, для определения коэффициентов фильтра hn требуется осуществить обратное преобразование от степенной формы (4.5.2) к ряду Фурье (4.5.1). Выполнение данной операции достаточно просто производится рекурсивным способом, показанным на рис. 4.5.2. Подробное обоснование рекурсии приведено в /л24/.
Пример расчета гладкого фильтра.
Произвести расчет ФНЧ с гладкой частотной характериcтикой с перегибом характеристики в точке /3.
За исходную функцию принять функцию (4.5.3).
1. x= cos(/3)= 0.5= (z-r)/(z+r). Принято: z=3, r=1. Исходный многочлен: g(x) = (1-x)(1+x)3 = 1+2x-2x3-x4.
2. h(x)= g(x)dx = C+x+x2-0.5 x4-0.2 x5. При х = -1, h(-1) = 0, откуда С=0.3. При х=1, h(1)=1.6.
Отсюда: H(x)= (3+10x+10x2-5x4-2x5)/16. gn = {3/16, 10/16, 10/16, 0, -5/16, -2/16}.
3. Применяя рекурсивное преобразование, получаем коэффициенты ФНЧ: hn= {(98, 70, 20, -5, -5, -1)/256}.
Для расчетов гладких фильтров высоких частот в выражении (4.5.4) достаточно поменять местами пределы интегрирования. Гладкие полосовые фильтры получаются комбинацией ФНЧ и ФВЧ с перекрытием частот пропускания.
(!!!КР11- Разработка программы расчета гладких полосовых фильтров)