
- •Цифровая обработка сигналов
- •Тема 1: фильтрация одномерных сигналов.
- •1.1. Введение.
- •1.2. Цифровые фильтры /л2,л24/.
- •1.2.6. Интегрирующий рекурсивный фильтр.
- •1.3. Импульсная реакция фильтров.
- •1.4. Передаточные функции фильтров /л7/.
- •1.5. Частотные характеристики фильтров /л2,л13,л24/.
- •1.6. Фильтрация случайных сигналов /л4,л15,л24/.
- •1.7. Структурные схемы цифровых фильтров /л8,л21/.
- •Тема 2: частотный анализ цифровых фильтров.
- •Введение.
- •2.1. Сглаживающие фильтры и фильтры аппроксимации /л24/.
- •2.2. Разностные операторы /л24/.
- •2.3. Интегрирование данных /л24/
- •2.4. Расчет фильтра по частотной характеристике.
- •Тема 3: весовые функции.
- •3.1. Явление Гиббса /л24/.
- •3.2. Весовые функции /л16/.
- •Тема 4: нерекурсивные частотные фильтры.
- •4.1. Общие сведения.
- •4.2. Идеальные частотные фильтры.
- •4.3. Конечные приближения идеальных фильтров /л24/.
- •4.4. Дифференцирующие цифровые фильтры.
- •4.5. Гладкие частотные фильтры /л24/.
- •Тема 5: рекурсивные фильтры
- •5.1. Принципы рекурсивной фильтрации.
- •5.2. Режекторные и селекторные фильтры.
- •5.3. Билинейное z-преобразование.
- •5.4. Типы рекурсивных частотных фильтров.
- •Тема 6: рекурсивные частотные фильтры
- •6.1. Низкочастотный фильтр Баттеруорта /л12,л24/.
- •6.2. Высокочастотный фильтр Баттеруорта /л12/.
- •6.3. Полосовой фильтр Баттеруорта /л12/.
- •6.4. Фильтры Чебышева /л12/.
- •6.4. Дополнительные сведения.
- •Тема 7: деконволюция сигналов
- •7.1. Понятие деконволюции.
- •7.2. Инверсия импульсного отклика фильтра.
- •7.3. Оптимальные фильтры деконволюции /л12,л22/.
- •7.4. Рекурсивная деконволюция /л22/.
- •7.5. Фильтры неполной деконволюции.
- •Тема 8: основы теории вероятностей случайных сигналов
- •8.1. Основные понятия теории вероятностей [л28,л29].
- •8.2. Вероятности случайных событий [л30,л28,л29].
- •8.3. Случайные величины [л30,л31,л2,л4,л15].
- •8.4. Системы случайных величины [л31,л2,л4,л15].
- •Тема 9: случайные сигналы
- •9.1. Случайные процессы и функции [л31,л2,л4].
- •9.2. Функции спектральной плотности [л31,л4,л32].
- •9.3. Преобразования случайных функций [л31,л2,л32].
- •9.4. Модели случайных сигналов и помех [л33,л4].
- •Тема 10: оптимальные линейные фильтры.
- •10.1. Модели случайных процессов и шумов /л12/.
- •10.2. Критерии построения оптимальных фильтров.
- •10.3. Фильтр Колмогорова-Винера.
- •10.4. Оптимальные фильтры сжатия сигналов.
- •10.5. Фильтры прогнозирования.
- •10.6. Фильтр обнаружения сигналов.
- •10.7. Энергетический фильтр.
- •Тема 11: адаптивная фильтрация данных
- •11.1. Введение.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.4. Статистическая группировка полезной информации.
- •Литература
4.2. Идеальные частотные фильтры.
Идеальным полосовым фильтром называется фильтр, имеющий единичную амплитудно-частотную характеристику в полосе от определенной нижней частоты н до определенной верхней частоты в и нулевой коэффициент передачи за пределами этой полосы (для цифровых фильтров - в главном частотном диапазоне).
Импульсная реакция фильтра (коэффициенты оператора) находится преобразованием Фурье заданной передаточной функции H(). В общем случае:
h(nt)
= (1/2)
H()
exp(jnt)
d
Для получения вещественной функции импульсного отклика фильтра действительная часть передаточной функции должна быть четной, а мнимая - нечетной. Цифровые фильтры задаются в главном частотном диапазоне, границы которого (частота Найквиста N) определяются интервалом дискретизации данных (N = /t), подлежащих фильтрации, и соответственно определяют интервал дискретизации оператора фильтра (t = /N). Для фильтров с нулевым фазовым сдвигом мнимая часть передаточной функции должна быть равна нулю, при этом оператор фильтра определяется косинусным преобразованием Фурье:
h(nt)=
(1/)
H()
cos(n/N)
dn
= 0,1,2,... (4.2.1)
Для идеального полосового фильтра H()=1 в полосе частот от н до в и интеграл (4.2.1) вычисляется в этих пределах. Идеальные фильтры низких и высоких частот можно считать частными случаями идеальных полосовых фильтров с полосой пропускания от 0 до в для низкочастотного и от н до N для высокочастотного фильтра.
При интервале дискретизации данных t, условно принимаемым за 1, главный частотный диапазон передаточных функций ограничивается значением частоты Найквиста от - до . Если на практике интервал дискретизации данных в физических единицах отличается от 1, то это сказывается только на изменении масштаба частотной шкалы передаточных функций.
Пример 1. t = 0.1 сек. fN = 1/2t = 5 Гц. N =/t = 10 .
Пример 2. x = 10 метров. fN = 0.05 м-1. N= 0.1 .
Во всех дальнейших выражениях значение t, если это специально не оговорено, будем принимать равным 1.
При H()=A=1 в полосе пропускания н-в, и H()=0 за ее пределами, для идеальных симметричных полосовых НЦФ из (4.2.1) в общем виде получаем:
h(n) = (А/) [в sinc(nв) - н sinc(nн)], (4.2.2)
ho = (в - н)/, h(n) = (sin nв - sin nн)/(n).
где sinc(n) = sin(n)/(n) - функция интегрального синуса (функция отсчетов), бесконечная по координате .
Рис.
4.2.1. Входные сигналы.
Рис. 4.2.2. Спектр сигнала и границы
фильтра.
Рис. 4.2.3. Оператор
фильтра.
На рис. 4.2.3 приведен оператор полосового фильтра, вычисленный по (4.2.2) для приведенных выше условий с ограничением по n до N=100. Как видно из рисунка, оператор затухает достаточно медленно и явно усечен, что должно сказаться на форме частотной характеристики фильтра. Все дальнейшие вычисления будут проводиться на продолжении данного примера.