
- •Цифровая обработка сигналов
- •Тема 1: фильтрация одномерных сигналов.
- •1.1. Введение.
- •1.2. Цифровые фильтры /л2,л24/.
- •1.2.6. Интегрирующий рекурсивный фильтр.
- •1.3. Импульсная реакция фильтров.
- •1.4. Передаточные функции фильтров /л7/.
- •1.5. Частотные характеристики фильтров /л2,л13,л24/.
- •1.6. Фильтрация случайных сигналов /л4,л15,л24/.
- •1.7. Структурные схемы цифровых фильтров /л8,л21/.
- •Тема 2: частотный анализ цифровых фильтров.
- •Введение.
- •2.1. Сглаживающие фильтры и фильтры аппроксимации /л24/.
- •2.2. Разностные операторы /л24/.
- •2.3. Интегрирование данных /л24/
- •2.4. Расчет фильтра по частотной характеристике.
- •Тема 3: весовые функции.
- •3.1. Явление Гиббса /л24/.
- •3.2. Весовые функции /л16/.
- •Тема 4: нерекурсивные частотные фильтры.
- •4.1. Общие сведения.
- •4.2. Идеальные частотные фильтры.
- •4.3. Конечные приближения идеальных фильтров /л24/.
- •4.4. Дифференцирующие цифровые фильтры.
- •4.5. Гладкие частотные фильтры /л24/.
- •Тема 5: рекурсивные фильтры
- •5.1. Принципы рекурсивной фильтрации.
- •5.2. Режекторные и селекторные фильтры.
- •5.3. Билинейное z-преобразование.
- •5.4. Типы рекурсивных частотных фильтров.
- •Тема 6: рекурсивные частотные фильтры
- •6.1. Низкочастотный фильтр Баттеруорта /л12,л24/.
- •6.2. Высокочастотный фильтр Баттеруорта /л12/.
- •6.3. Полосовой фильтр Баттеруорта /л12/.
- •6.4. Фильтры Чебышева /л12/.
- •6.4. Дополнительные сведения.
- •Тема 7: деконволюция сигналов
- •7.1. Понятие деконволюции.
- •7.2. Инверсия импульсного отклика фильтра.
- •7.3. Оптимальные фильтры деконволюции /л12,л22/.
- •7.4. Рекурсивная деконволюция /л22/.
- •7.5. Фильтры неполной деконволюции.
- •Тема 8: основы теории вероятностей случайных сигналов
- •8.1. Основные понятия теории вероятностей [л28,л29].
- •8.2. Вероятности случайных событий [л30,л28,л29].
- •8.3. Случайные величины [л30,л31,л2,л4,л15].
- •8.4. Системы случайных величины [л31,л2,л4,л15].
- •Тема 9: случайные сигналы
- •9.1. Случайные процессы и функции [л31,л2,л4].
- •9.2. Функции спектральной плотности [л31,л4,л32].
- •9.3. Преобразования случайных функций [л31,л2,л32].
- •9.4. Модели случайных сигналов и помех [л33,л4].
- •Тема 10: оптимальные линейные фильтры.
- •10.1. Модели случайных процессов и шумов /л12/.
- •10.2. Критерии построения оптимальных фильтров.
- •10.3. Фильтр Колмогорова-Винера.
- •10.4. Оптимальные фильтры сжатия сигналов.
- •10.5. Фильтры прогнозирования.
- •10.6. Фильтр обнаружения сигналов.
- •10.7. Энергетический фильтр.
- •Тема 11: адаптивная фильтрация данных
- •11.1. Введение.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.4. Статистическая группировка полезной информации.
- •Литература
Тема 4: нерекурсивные частотные фильтры.
Недостаточно овладеть премудростью, нужно уметь пользоваться ею.
Цицерон. О высшем благе и высшем зле.
(Римский сенатор и философ)
Мало пользы от теории бокса, пока сам не научишься махать кулаками.
Евгений Буцко. Назидания идиотам.
(Ленинградский инженер и геофизик)
Содержание: 4.1. Общие сведения. Типы фильтров. Методика расчетов. 4.2. Идеальные частотные фильтры. Импульсная реакция фильтров. 4.3. Конечные приближения идеальных фильтров. Применение весовых функций. Весовая функция Кайзера. 4.4. Дифференцирующие цифровые фильтры. 4.4. Гладкие частотные фильтры. Литература.
4.1. Общие сведения.
К наиболее известным типам нерекурсивных цифровых фильтров (НЦФ) относятся частотные фильтры, алгоритм которых для симметричных НЦФ, не изменяющих фазу сигналов, имеет вид:
yk = hn sk-n .
Рис. 4.1.1. Типы
частотных фильтров.
Практика проектирования нерекурсивных цифровых фильтров базируется, в основном, на синтезе фильтров низких частот. Все другие виды фильтров могут быть получены из фильтров низких частот соответствующим преобразованием. Так, например, фильтр высоких частот может быть получен инверсией фильтра низких частот - вычислением разности между исходным сигналом и результатом его фильтрации низкочастотным НЦФ:
y(k) = s(k) – h(n) s(k-n).
Отсюда, условие инверсии симметричного низкочастотного фильтра в высокочастотный:
hв(0)
= 1- hн(0),
hв(n)
= -hн(n)
при n
0.
(4.1.1)
Применяется также способ получения фильтров высоких частот из низкочастотных фильтров путем реверса частоты в передаточной функции низкочастотного фильтра, т.е. заменой переменной на переменную ' = (при t = 1). Для симметричных фильтров, содержащих в передаточной функции только косинусные члены аргумента , в результате такой операции будем иметь:
cos n(-) = cos n cos n = (-1)n cos n.
Последнее означает смену знака всех нечетных гармоник передаточной характеристики фильтра и, соответственно, всех нечетных членов фильтра.
Полосовой фильтр может реализоваться последовательным применением ФНЧ и ФВЧ с соответствующим перекрытием частот пропускания. В математическом представлении это означает последовательную свертку массива данных с массивами коэффициентов hн - низкочастотного, и hв - высокочастотного фильтров:
vk = hн(n) * s(k-n), yk = hв(n) * vk = hн(n) * hв(n) * s(k-n).
Так как операция свертки коммутативна, то вместо отдельных массивов коэффициентов ФНЧ и ФВЧ их сверткой может быть определен непосредственно массив коэффициентов полосового фильтра: hn = hн(n) * hв(n).
Полосовой режекторный фильтр также может быть получен методом инверсии полосового фильтра. Одночастотные режекторные фильтры обычно выполняются на основе простых рекурсивных цифровых фильтров, более эффективных для данных целей.
Методика расчетов НЦФ в самом общем виде включает:
1. Задание идеальной частотной передаточной функции фильтра.
2. Расчет функции отклика идеального фильтра (обратное преобразование Фурье передаточной функции фильтра).
3. Ограничение функции отклика до определенного количества членов, при этом на передаточной характеристике фильтра возникает явление Гиббса.
4. Для нейтрализации явления Гиббса производится выбор весовой функции и расчет ее коэффициентов, на которые умножаются коэффициенты функции отклика фильтра. Результатом данной операции являются значения коэффициентов оператора фильтра (импульсный отклик фильтра). По существу, операции 3 и 4 представляют собой усечение ряда Фурье динамического (временного) представления передаточной функции фильтра определенной весовой функцией.
5. С использованием полученных значений коэффициентов оператора фильтра производится построение его частотной характеристики и проверяется ее соответствие поставленной задаче.