
- •Теоретические основы холодильных машин курс лекций
- •1. Физические принципы получения низких температур.
- •1.1. Фазовый переход.
- •1.2. Дросселирование (Эффект Джоуля-Томсона).
- •2.3 Адиабатное расширение.
- •2.4 Вихревой эффект (эффект Ранка-Хильша).
- •2.5 Термоэлектрический эффект (эффект Пельтье).
- •2.6 Адиабатное размагничивание.
- •2.7 Десорбция газов.
- •2.Рабочие вещества холодильных машин.
- •2.1.Классификация рабочих веществ
- •2.2.Свойства холодильных агентов
- •2.3.Выбор холодильных агентов
- •2.4.Промежуточные хладоносители
- •2.5 Выбор хладоносителей
- •2.6 Термодинамические диаграммы
- •5.Схемы и циклы паровых компрессорных холодильных машин
- •5.1.Классификация паровых компрессионных холодильных машин.
- •5.2.Одноступенчатые холодильные машины.
- •5.3.Двухступенчатые холодильные машины.
- •5.5.Каскадные холодильные машины.
- •Холодильные компрессоры Введение
- •1 Поршневые компрессоры
- •1.1 Теоретический поршневой компрессор
- •1.4 Классификация поршневых компрессоров
- •2 Основные узлы и детали поршневых компрессоров
- •2.1 Коленчатые валы
- •2.2 Картеры
- •2.3 Цилиндры
- •2.4 Поршни
- •2.5 Поршневые кольца
- •2.6 Шатуны
- •2.7 Клапаны
- •2.8 Крейцкопфы
- •2.9 Штоки
- •2.10 Сальники
- •2.11 Системы смазки компрессора
- •3 Марка компрессоров
- •4 Регулирование производительности поршневых компрессоров
- •6 Преимущества и недостатки поршневых компрессоров
- •Аппараты холодильных машин.
- •Конденсаторы.
- •Кожухотрубный горизонтальный конденсатор.
- •Кожухозмеевиковый конденсатор.
- •Кожухотрубный элементный конденсатор.
- •Кожухотрубный вертикальный конденсатор.
- •Пластинчатые конденсаторы.
- •Пакетно – панельный конденсатор.
- •Оросительный конденсатор.
- •Испарительный конденсатор.
- •Воздушные конденсаторы с принудительной циркуляцией воздуха
- •Конденсаторы с естественной циркуляцией воздуха
- •Испарители холодильных машин.
- •Кожухотрубные испарители с межтрубным кипением холодильного агента.
- •Кожухотрубные испарители с внутритрубным кипением холодильного агента
- •Кожухотрубные оросительные испарители.
- •Панельный испаритель.
- •Пластинчатый испаритель.
- •Вспомогательные аппараты холодильных машин.
- •Регенеративный теплообменник.
- •Промежуточные сосуды.
- •Переохладитель
- •Отделитель жидкости
- •Маслоотделители
- •Маслосборник
- •Ресиверы Линейный ресивер
- •Дренажный ресивер
- •Защитный ресивер
- •Циркуляционные ресивера
- •Компаубные ресивера
- •Литература.
Пластинчатые конденсаторы.
Пластинчатые конденсаторы состоят из набора гофрированных пластин. Каждая пластина с одной стороны омывается холодильным агентом, а с другой стороны – водой. Между пластинами устанавливаются уплотнительные прокладки. Направление гофр соседних пластин должно быть противоположно для турбулизации потока. С помощью неподвижных и подвижных плит пластины стягиваются шпильками. По конструкции они бывают разборные, полуразборные и неразборные. В разборных конденсаторах между всеми пластинами устанавливаются резиновые или паранитовые прокладки. Преимущества такой конструкции – возможность разборки и очистки всех пластин. В полуразборных конденсаторах пластины попарно сварены между собой со стороны холодильного агента. В неразборных конденсаторах все пластины сварены между собой.
Недостатком пластинчатых конденсаторов является невозможность очистки пластин от водного камня механическим путем.
Преимущества пластинчатых конденсаторов:
Интенсивность теплообмена в 4-5 раз выше, чем в кожухотрубных горизонтальных конденсаторах.
Значительно меньшая занимаемая площадь.
Значительно меньший расход дорогостоящих бесшовных труб.
Возможность изменения площади теплопередающей поверхности при изменении тепловой нагрузки.
Возможность очистки пластин механическим путем в разборных и полуразборных конденсаторах.
Недостатки пластинчатых конденсаторов:
Сложность конструкции.
Сложность ремонта.
Большие гидравлические потери, как со стороны холодильного агента, так и со стороны охлаждающей воды.
Возможность прогиба пластин и ухудшения циркуляции воды.
Расстояние между пластинами со стороны холодильного агента 3-5 мм, а со стороны воды – 8-9 мм.
Пакетно – панельный конденсатор.
Пакетно–панельный конденсатор представляет собой большой стальной прямоугольный бак. Внутри бака размещено несколько теплообменных секций. Каждая секция представляет собой цельноштампованную панель с вертикальными каналами. Сверху панель приварена к верхнему паровому коллектору, а снизу – к жидкостному коллектору. Верхние коллекторы всех теплообменных секций соединены с общим паровым коллектором. Нижние коллекторы всех теплообменных секций соединены с общим жидкостным коллектором. В баке все теплообменные секции установлены в шахматном порядке.
Сжатый горячий пар поступает в общий паровой коллектор. Из коллектора пар распределяется по верхним коллекторам каждой теплообменной секции. В верхних коллекторах и вертикальных каналах панелей пар охлаждается и конденсируется. Образовавшаяся жидкость через нижние коллекторы собирается в общий жидкостной коллектор и далее выводится из конденсатора. Холодная вода через входной патрубок поступает в бак. Далее вода последовательно омывает все теплообменные секции и нагревается на 4-60С. Отепленная вода выходит через выходной патрубок , расположенный в противоположной стенке бака.
Преимущества пакетно – панельного конденсатора:
1. Значительно меньший расход дорогостоящих бесшовных труб.
2. Возможность очистки наружной поверхности панели механическим путем
3. Простота конструкции.
4. Малые гидравлические потери со стороны охлаждающей воды.
Недостатки пакетно – панельного конденсатора:
Меньшая интенсивность теплообмена, чем в кожухотрубных конденсаторах.
Большая занимаемая площадь.
Большая металлоемкость.
В настоящее время они не выпускаются, но используются в старых холодильных установках.