
- •Конспекты лекций. Лекция 1.(Системный анализ) применение системного подхода к изучению объектов живой природы
- •1. Применение системного подхода к изучению объектов живой природы, система как объект
- •2. Системные исследования
- •Лекция 2.(Системный анализ) Система как понятие. Системообразующие факторы.
- •1. Система как понятие
- •2. Системообразущие факторы
- •2.1. Внешние системообразующие факторы
- •2.2 Внутренние системообразующие факторы
- •2.3. Искусственные системообразующие факторы
- •Лекция 3.(Системный анализ) Классификация систем.
- •1. Введение
- •2. Классификация систем
- •Лекция 4.(Системный анализ) Принципы изучения системы. Способы описания систем.
- •1. Принципы изучения системы.
- •2. Функциональное описание
- •Лекция 5. (Системный анализ) Способы описания систем (морфологическое описание).
- •1. Введение
- •2. Первый этап морфологического описания.
- •2. Второй этап морфологического описания.
- •Лекция 6. (Системный анализ) Информационное и генетико - прогностическое описания.
- •1. Информационное описание
- •2. Генетико-прогностическое описание
- •Лекция 7. (Системный анализ) Системные аспекты управления
- •1. Понятие управления
- •2. Управление как процесс.
- •Лекция 8. (Системный анализ) Системные аспекты управления
- •1. Механизмы управления.
- •2. Обратные связи.
- •3. Запаздывания и задержки.
- •Лекция 9. (Системный анализ) Гомеостаз.
- •1. Гомеостаз.
- •2. Устойчивость и живучесть
- •3. Адаптивность
- •4. Гомеостатические системы управления.
- •Лекция 10. (Системный анализ) Основные функциональные характеристики сложных систем.
- •Лекция 11. (Системный анализ) Этапы системного исследования.
- •1. Изучение степени организованности объекта как сложной системы.
- •2. Изучение законов функционирования.
- •3. Изучение пути развития объекта.
- •Лекция 12. (Системный анализ) биологические системы с позиций системного анализа
- •1. Применение системного подхода при исследовании биообъектов.
- •Морфологическая и функциональная сложность.
- •Лекция 13. (Системный анализ) Эволюционный аспект развития биосистем.
- •Лекция 14.(Системный анализ) особенности структурной организации и функционирования биосистем
- •Лекция 15. (Системный анализ) Системный анализ и его основные этапы.
- •Опорная схема алгоритма постановки задач прикладного системного исследования.
- •Лекция 16. (Системный анализ) Системный анализ и его основные этапы (продолжение.)
2. Управление как процесс.
П
Рис. 1. Анализ
управления
Процесс управления может реализовываться как на интуитивном, так и на осознанном уровне. Первый используют животные, второй — человек. Осознанное удовлетворение потребностей заставляет декомпозировать алгоритм управления и вводить промежуточную стадию — формулировку цели управления, т. е. действовать по двухэтапной схеме:
Н
Рис. 2. Взаимодействие
элементов системы управления
У
Рис.
3. Структурная схема системы управления
получение информации о задачах управления;
получение информации о результатах управления (т. е. о поведении объекта управления);
анализ полученной информации и выработка решения;
исполнение решения (т. е. осуществление управляющих воздействий).
Процесс управления — это информационный процесс, заключающийся в сборе информации о ходе процесса, передаче ее в пункты накопления и переработки, анализе поступающей, накопленной и справочной информации, принятии решения на основе выполненного анализа, выработке соответствующего управляющего воздействия и доведении его до объекта управления. Каждая фаза процесса управления протекает во взаимодействии с окружающей средой при воздействии различного рода помех. Цели, принципы и границы управления зависят от сущности решаемой задачи.
С
истема
управления — совокупность взаимодействующих
между собой объекта управления и органа
управления, деятельность, которых
направлена на достижение заданной цели
управления (рис. 4). В СУ решаются четыре
основные задачи управления:
стабилизация, выполнение программы,
слежение, оптимизация.
Рис.
4. Системы управления как совокупность
объектов
Задача выполнения программы возникает в случаях, когда заданные значения управляемых величин изменяются во времена заранее известным образом. Например, полет ракеты, выполнение работ по заранее намеченному графику.
В тех случаях, когда изменение заданных значений управляемых величин заранее неизвестно и когда эти величины должны изменяться в зависимости от значений других величин, возникает задача слежения, т. е. как можно более точного соблюдения соответствия между текущим состоянием данной системы и состоянием другой системы. Например, управление производством в условиях изменения спроса, слежение за целью (например, самолетом, кораблем, космическим объектом).
В системах оптимального управления требуется наилучшим образом выполнить поставленную перед системой задачу при заданных реальных условиях и ограничениях. Понятие оптимальности должно быть конкретизировано для каждого отдельного случая.
Прежде чем принимать решение о создании СУ, необходимо рассмотреть все его этапы, независимо от того, с помощью каких технических средств они будут реализованы. Такой алгоритмический анализ управления является основой для принятия решения о создании СУ и степени ее автоматизации. При этом анализе следует обязательно учитывать фактор сложности объекта управления:
отсутствие математического описания системы;
стохастичность поведения;
негативность к управлению;
нестационарность, дрейф характеристик;
невоспроизводимость экспериментов (развивающаяся система все время как бы перестает быть сама собой, что предъявляет специальные требования к синтезу и коррекции модели объекта управления).
Особенности сложной системы часто приводят к тому, что цель управления таким объектом в полной мере никогда не достигается, как бы совершенно ни было управление.
Системы управления делятся на два больших класса: системы автоматического управления (САУ) и автоматизированные системы управления (АСУ). В САУ управление объектом или системой осуществляется без непосредственного участия человека автоматическими устройствами. Это замкнутые системы. Основные функции САУ: автоматический контроль и измерения, автоматическая сигнализация, автоматическая защита, автоматические пуск и остановка различных двигателей и приводов, автоматическое поддержание заданных режимов работы оборудования, автоматическое регулирование. В отличие от САУ в АСУ в контур управления включен человек, на которого возлагаются функции принятия наиболее важных решений и ответственности за принятые решения. Под АСУ обычно понимают человеко-машинные системы, использующие современные математические методы, средства вычислительной техники и связи, а также новые организационные принципы для отыскания и реализации на практике наиболее эффективного управления объектом (системой).