Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MATEM_TEORIYa.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.55 Mб
Скачать

1. Егер қандай да бір векторлар базис құрса, онда осы векторлардың координаталарынан құрылған анықтауыш нолден өзгеше болады.

2. п өлшемді векторлық кеңістіктің әр бір векторы базистік векторлардың сызықты комбинациясы арқылы жазылады және бұл жазу жалғыз болады. Сонда, егер - кеңістіктің базисі болса, онда кез келген x R векторы жалғыз түрде былай жазылады:

.

Демек базисінде х векторы сандарымен жалғыз түрде анықталады. сандар х векторының осы базистегі координаталары деп аталады.

Мысал. x=(1;3;0), y=(-1;2;1), z=(1;-1;2) векторлары базис құра ма? Егер құрса u=(2;0;1) векторын (x,y,z) базисі бойынша жікте (яғни, u векторын x, y, z векторларының сызықты комбинациясы арқылы жазу керек).

Шешуі. Бірінші тұжырым бойынша x, y, z векторлары базис құрса, онда осы векторлардың координаталарынан құрылған анықтауыш нолден өзгеше болуы керек:

Демек, x, y, z векторлары базис құрады екен.

Екінші тұжырым бойынша u векторы (x,y,z) базисте жіктеледі және ол жіктелу жалғыз болады:

.

x, y, z, u векторларын бағана түрінде жазып, теңдікті ашып жазайық:

+ + =

Есеп мынадай жүйені шешуге келтірілді:

Осы жүйені шешіп u векторының (x, y, z) базисіндегі ( , , ) координаталарын табамыз. Үш белгісізді үш теңдеуден тұрған жүйені жүйе шешудің кез келген әдісімен шешуге болады. Сонда мынадай жалғыз шешім аламыз:

, , .

Сонымен, .

12. Функцияның нүктедегі шегі. Тамаша шектер Анықтама. Егер алдын ала берілген, мейілінше аз санына саны табылып, шартын қанағаттандыратын барлық х үшін теңсіздігі орындалса, онда А саны f(x) функциясының х аргумент х0-ге ұмтылғандағы шегі деп аталады да, былай жазылады: .Анықтамадағы теңсіздікті ашсақ, мынадай қос теңсіздік аламыз: . интервалды нүктесінің -маңайы дейді. Сол сияқты теңсіздікті ашсақ: . интервалды А нүктесінің -маңайы дейді.

1-ші тамаша шек

Теорема. функциясы x=0 нүктеде анықталмаған, бірақ жағдайда шегі бар және Осы шекті бірінші тамаша шек деп атайды.

Бірінші тамаша шек салдары:

1) , 2) , 3) .

Мысал. а) .

б) .

Екінші тамаша шек

Теорема. функциясының жағдайда шегі бар және

Осы шекті екінші тамаша шек деп атайды. Мұндағы иррационал саны Эйлер саны екені белгілі.

Екінші тамаша шек салдары:

1) , a=e болғанда ;

2) , a=e болғанда ;

3) Мысал. а) екенін көрсет.

Шешуі. деген білгілеу енгізейік. Осыдан . Және де кезде. Енді шек есептесек .

б)

Лопиталь ережесі арқылы анықталмағандықты ашу.Теорема (Лопиталь ережесі). f(x) және g(x) функциялары ( ) жағдайда нолге немесе шексіздікке ұмтылсын. Егер олардың туындыларының қатынасының шегі (ақырлы не ақырсыз) бар болса, функциялар қатынасының да шегі бар болады және мына қатынас орындалады: . Лопиталь ережесін қолданып ектерді есмептейік.

1. .

2.

3. .

Үшінші мысалда Лопиталь ережесін бірден қолдануға келмейді. Сондықтан, алгебралық түрлендіру көмегімен түріндегі анықталмағандықты немесе түріндегі анықталмағандықтарға келтіреміз. Осы мақсатпен х2 бөлімнің бөліміне түсірілді.

4. . Айталық деп белгілеп, теңдеудің екі жағын логарифмдейік. Теңдеудіңоңжағынесептейік:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]