
- •1.Матрица және матицаларға амалдар қолдану.
- •4. Кері матрица.Матрица рангісі
- •4).Матрица рангісі
- •5.Сызықты теңдеулер жүйесі
- •6. Сызықтық теңдеулер жүйесі. Гаусс әдісі.
- •(1) Теңдеудің қысқаша жазылуы мынадай:
- •Осы матрицаны түрлендірулер нәтижесінде мынадай түрге келтіреміз:
- •7.Аналитикалық геометрияның қарапайым есептері
- •8.Вектор және векторларға қолданылатын сызықтық амалдар.
- •9.Жазықтықтағы түзу теңдеулері.
- •1)Түзулердің теңдеулері
- •10.Екінші ретті қисықтар:
- •11. Вектордың векторлық көбейтіндісі.
- •1. Егер қандай да бір векторлар базис құрса, онда осы векторлардың координаталарынан құрылған анықтауыш нолден өзгеше болады.
- •13. Туынды ұғымы.
- •Туындының механикалық мағынасы. Айталық нүкте түзу бойымен қозғалып, уақыт ішінде s(t) жол жүрген болсын.
- •Туындының механикалық мағынасы. Айталық нүкте түзу бойымен қозғалып, уақыт ішінде s(t) жол жүрген болсын.
- •14. Туынды
- •1. Күрделі функцияны дифференциалдау.
- •15. Функция дифференциалы.
- •16. Функцияның нүктедегі үзіліссіздігі.Функцияның үзіліс нүктелері
- •17. Жоғарғы ретті туындылар және дифференцилдар.
- •18.Функцияның экстремумдары.
- •20. Кеңістіктегі түзу.
- •21.Анықталған интеграл.
- •22.Анықталмаған интегралдаудың негізгі әдістері
- •3. Түріндегі интегралдар, мұндағы және - тұрақты сандар.
- •23. Анықталмаған интеграл.
- •24.Анықталған интегралдаудың негізгі әдістері.
- •25. Дифференциалданатын функциялара туралы негізгі теоремалар:
- •С) Лагранж теоремасы. Егер f(X) функциясы [a, b] кесіндісінде үзіліссіз,
5.Сызықты теңдеулер жүйесі
Негізгі ұғымдар мен анықтамалар. n белгісізді m теңдеуден тұратын жүйе деп мынадай жүйені айтады:
(1)
мұндағы
(i=1,2,…,m,
j=1,2,…,n) - теңдеу
коэффициенттері деп, ал
(i=1,2,…,m)
- бос
мүшелері деп аталады.
Жүйенің әрбір теңдеуін тепе-теңдікке айналдыратын
сандар
тізбегі теңдеулер
жүйесінің шешімі
деп аталады. Осы шартты қанағаттандыратын
барлық
шешімдер шешімдер
жиынын
құрады. Жүйенің шешімдер жиынын табу
процесін жүйені шешу дейді.
(1) жүйенің ең болмағанда бір шешімі болса жүйе үйлесімді, ал шешімі болмаса үйлесімсіз деп аталады.
Үйлесімді жүйенің бір ғана шешімі болса, жүйе анықталған, ал шешімі бірден көп болса анықталмаған деп аталады.
Енді (1) жүйеге мынадай белгілеулер енгізейік:
,
,
А - жүйе коэффициенттерінен құрылған матрица немесе жүйе матрицасы, Х - жүйенің бос мүшелерінен құрылған бағана матрица, В - жүйенің бос мүшелерінен құрылған бағана матрица. Осы белгілеулерді қолданып (1) жүйені былайша жазуға болады:
АХ=В (3)
(3) теңдеу (1) жүйенің матрицалық жазылуы болып табылады.
Егер жүйе матрицасына бос мүшелер матрицасын жалғап жазсақ,
,
жүйенің кеңейтілген матрицасын аламыз.Ең болмағанда бір бос мүше нөлге тең болмаса онда ол біртекті емес жүйе деп аталады.
ЖҮЙЕ ШЕШУДІҢ КРАМЕР ӘДІСІ. Бұл әдіс жүйедегі теңдеулер саны мен белгісіздер саны тең болғанда, яғни m=n, қолдануға болады. Демек, жүйе түрі мынадай болады:
(4)
Жүйедегі
теңдеулер саны мен белгісіздер саны
тең, онда жүйе матрицасы квадрат матрица
болады. Сол квадрат матрицаның анықтауышын
деп белгілейік:
Д)Крамер
ережесі.
-жүйе
анықтауышы, ал
-
анықтауыштың j-тік жолын бос мүшелермен
алмастырғаннан пайда болған анықтауыш
болсын. Сонда, егер
болса жүйенің жалғыз шешімі бар болады
және мынадай формуламен табылады:
(i=1,2,…,n)
(5)
(5) формуланы Крамер формуласы деп атайды.
Осы ережені қолданып мынадай жүйені шешейік
Шешуі. Алдымен анықтауышты есептейміз,
.
(j=1,2,3) анықтауыштарды есептейік
,
,
Енді Крамер формуласын қолданып белгісіздерді табамыз:
,
,
.
Сонымен, берілген жүйенің жалғыз (-1; 2; 3) шешімі табылды, жүйе анықталған екен.
6. Сызықтық теңдеулер жүйесі. Гаусс әдісі.
Кронеккер-Капелли теоремасы. Егер сызықты теңдеулер жүйесінің негізгі матрицасы мен кеңейтілген матрицасының ранглері тең болса, онда жүйе үйлесімді болады.
Теорема
бойынша жүйе үйлесімді болуы үшін
болуы керек. Бұл кезде r
жүйе
рангісі
деп аталады.
Үйлесімді жүйенің рангісі жүйедегі белгісіздер санына тең болса (r=n), онда жүйе анықталған болады, ал егер жүйенің рангісі жүйедегі белгісіздер санынан кем болса (r<n), онда жүйе анықталмаған болады.
Мысалы, мынадай жүйе қарастырайық:
Жүйенің кеңейтілген матрицасын жазып, элементар түрлендірулер жасайық:
Жүйе
матрицасы мен кеңейтілген матрицаның
екінші ретті нолге тең емес минорлары
бар екенін көру қиын емес және
.
Кронеккер-Капелли теоремасы бойынша
жүйе үйлесімді.
Жүйе рангісі r=2, ал белгісіздер саны n=4, r<n болғандықтан жүйе анықталмаған, яғни шексіз көп шешімі бар.