Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры на суку берснева.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
543.96 Кб
Скачать

Недостатки емкостных датчиков

К недостаткам емкостных датчиков следует отнести:

  • сравнительно небольшой коэффициент передачи (преобразования);

  • высокие требования к экранировке деталей;

  • необходимость работы на повышенной (по сравнению с 50 Гц) частоте.

Однако в большинстве случаев можно добиться достаточной экранировки за счет конструкции датчика, а практика показывает, что емкостные датчики дают хорошие результаты на широко распространенной частоте 400 Гц. Присущий конденсаторам краевой эффект становится значительным, лишь когда расстояние между обкладками сравнимо с линейными размерами рассматриваемых поверхностей. Этот эффект можно в некоторой степени устранить, использую защитное кольцо, позволяющее вынести его влияние за границы поверхности обкладок, реально используемой при измерении.

При применении емкостных выключателей важно защититься от ложных срабатываний, которые могут быть вызваны, например, атмосферными осадками (налипание снега), технологическими жидкостями и др. (случайное прикосновение оператора к выключателю также вызовет его срабатывание). Чтобы скомпенсировать влияние осадков, пыли (при производстве стройматериалов), защитных перегородок т.п., введена регулировка чувствительности выключателя встроенным Разнообразие объектов воздействия, вызывающих срабатывание емкостных датчики, обуславливает широкий областей, в которых они применяются.

Классификация емкостных датчиков

По способу исполнения все емкостные измерительные преобразователи можно разделить наодноемкостные и двухъемкостные датчики.

Последние бывают дифференциальными и полудифференциальными.

Одноемкостный датчик прост по конструкции и представляет собой один конденсатор с переменной емкостью. К его минусам относится значительное влияние внешних факторов, таких как влажность и температура.

БИЛЕТ 22

1 вапрос Современная тенденция развития аналого-цифровых преобразователей (АЦП) состоит в увеличении скоростей и разрешающих способностей обработки сигналов при уменьшении уровня потребляемой мощности и напряжения питания. Современные преобразователи данных в основном работают на напряжениях питания ±5В (двуполярный источник питания), +5В или +3В (однополярный источник питания) [1]. В действительности, число устройств с напряжением питания +3В быстро увеличивается вследствие появления для них большого числа новых рынков сбыта, таких как цифровые камеры, видеокамеры и телефоны сотовой связи. Эта тенденция создала множество проектных и конструкторских проблем, которым не придавалось значения в разработках более ранних преобразователей, использовавших стандартное напряжение питания ±15В и диапазон изменения входных сигналов ±10В. Более низкие напряжения питания подразумевают меньшие диапазоны входных напряжений и, следовательно, большую чувствительность к разного вида помехам: шумам от источников питания, некачественным опорным и цифровым сигналам, электромагнитным воздействиям и радиопомехам (EMI/RFI) и, возможно наиболее важный момент - к некачественным методам развязки, заземления и размещения компонентов на печатной плате. В АЦП с однополярным источником питания диапазон изменения входных сигналов обычно отсчитывается вне связи с "землей". При этом проблема заключается в поиске совместимых усилителей с однополярным питанием для нормализации сигнала на входе АЦП и в осуществлении необходимого сдвига входного сигнала относительно "земли" в приложениях с непосредственной связью. В настоящее время доступны компоненты, которые обладают чрезвычайно высокими разрешающими способностями при низких напряжениях питания и малой потребляемой мощности. Аналоговый сигнал представляет собой непрерывный во времени и по амплитуде процесс, а его цифровое представление есть последовательность или ряд чисел, состоящих из конечного числа бит. Поэтому преобразование аналогового сигнала в цифровой состоит из двух этапов: дискретизации по времени и квантовании по амплитуде. Дискретизация по времени обычно означает, что сигнал представляется рядом своих отсчётов (дискретов) непрерывных по амплитуде и взятых через равные промежутки времени, хотя в некоторых специальных случаях может применяться и неравномерная по времени дискретизация, например при оцифровке узкополосных сигналов. Основной вопрос на первом этапе преобразования аналогового сигнала в цифровой (оцифровки) состоит в выборе частоты дискретизации аналогового процесса. Ответ на него даёт известная теорема Найквиста, утверждающая, что для того чтобы аналоговый (непрерывный по времени) сигнал занимающий полосу частот от 0 Гц до F Гц можно было абсолютно точно восстановить по его отсчётам, частота дискретизации должна быть не меньше 2*F Гц или отсчёты сигнала должны браться не реже чем через 1/ (2*F) секунды. Если реальный аналоговый сигнал преобразовать в цифровую форму, содержащую частотные компоненты от 0 Гц до 20 кГц, то частота дискретизации такого сигнала должна быть не меньше чем 40 кГц. Если дискретизировать сигнал с полосой больше, чем частота дискретизации, делённая на 2, то предварительно необходимо с помощью аналогового фильтра низких частот подавить ту высокочастотную часть сигнала, спектральные компоненты которой находятся выше по частоте, чем частота дискретизации делённая на два. Частотный спектр дискретизированного сигнала такой же по форме, как и спектр аналогового (непрерывного) сигнала и повторяется на частотах, кратных частоте дискретизации. Например, если аналоговый сигнал занимает полосу 0 - 20 кГц и дискретизирован с частотой 50 кГц, то копии спектра (alias или алиазинг) появятся на частотах 30 - 70 кГц, 80 - 120 кГц и т.д. Для точного восстановления непрерывного аналогового сигнала по его дискретным отсчётам алиазинговые спектры не должны искажать (накладываться) друг друга, из чего и следует требование дискретизации сигнала на частоте равной удвоенной полосе аналогового сигнала. Реальные аналоговые сигналы содержат компоненты (полезные и помехи), имеющие частотные

БИЛЕТ 23

Билет23

3.Биметаллические датчики

Температурная защита на основе термодатчиков является наиболее действенным и совершенным видом тепловой защиты электродвигателей. Реагирующий орган защитного устройства контролирует степень нагрева непосредственно источника выделения тепла (обмотка статора, подшипники, активное железо). Если температура превысит допустимое значение, то защита сработает и отключит электродвигатель от сети или включит дополнительное охлаждение. Для защиты обмотки статора от перегрева термодатчики устанавливаются в лобовых частях по одному (иногда по два) на фазу и соединяются между собой последовательно. Защита двигателя, выполненная на основе термодатчиков, сохранит двигатель от повреждений даже в случае причины возникновения тепла, не вызванной увеличением тока: ухудшение условий охлаждения, проворачивание подшипника в щите, повышение температуры окружающей среды и т.д. Рекомендуется устанавливать в каждую фазу не менее одного датчика, так как в случае неполнофазной работы двигателя установка датчика только в одну фазу (неработающую) приведет к выходу двигателя из строя (защита не сработает). В относительно небольших двигателях в виду ограниченности пространства допускается установка одного датчика.

Существует несколько типов температурных датчиков, отличие друг от друга которых заключается в особенности их принципа действия. Одним из таких типов является биметаллический датчик (рис. 1), биметаллический элемент которого выполнен в виде вогнутой мембраны, на которой укреплен подвижный контакт. При нагреве мембраны до температуры срабатывания она скачкообразно меняет направление своего выгиба. Подвижный контакт отходит от неподвижного, создавая разрыв управляющей цепи. После охлаждения мембрана также скачкообразно возвращается в исходное положение.

Биметаллический датчик следует подбирать в соответствии с классом изоляции обмотки, например в случае обмотки с классом изоляции F следует устанавливать датчик с температурой срабатывания 1300С (допускается также 1500С). В подшипниковый узел необходимо устанавливать датчик с температурой срабатывания 1000С, так как именно эта температура является максимально допустимой для подшипника качения согласно ГОСТ.

2. Усилитель — элемент системы управления предназначенный для усиления входного сигнала до уровня, достаточного для срабатывания исполнительного механизма за счёт энергии вспомогательного источника, или за счёт уменьшения других характеристик входного сигнала.

БИЛЕТ 24

Билет24

1. Дифференциальная схема состоит из двух смежных контуров с источником питания, а измерительный прибор включен в общую ветвь контуров и реагирует на разность контурных токов .В дифференциальной схеме могут быть использованы как параметрические датчики (с изменяющимися, сопротивлениями), так и генераторные (с изменяющейся ЭДС). При изменении магнитной связи между обмотками трансформатора ЭДС левого контура, например, возрастает, а правого – уменьшается. Изменение магнитной связи обусловлено контролируемой неэлектрической величиной. Оно может быть вызвано перемещением сердечника в дифференциальном трансформаторе.

При одинаковых напряжениях питания, сопротивлениях датчика и измерительного прибора, приращениях сопротивления датчика дифференциальная схема дает большее приращение тока в измерительной цепи. Следовательно, дифференциальная измерительная схема имеет большую чувствительность, чем мостовая схема.

Ток в измерительной цепи мостовых и дифференциальных схем зависит от напряжения питания. Колебания напряжения питания приводят к появлению погрешности, так как ток через прибор изменяется даже при неизменном сопротивлении датчика.

3. Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое для измерения температуры в промышленности, научных исследованиях, медицине, в системах автоматики.

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

2. Усилитель — элемент системы управления предназначенный для усиления входного сигнала до уровня, достаточного для срабатывания исполнительного механизма за счёт энергии вспомогательного источника, или за счёт уменьшения других характеристик входного сигнала.

Усилители могут быть классифицированы по различным признакам: назначению, типу усилительных элементов, частотной полосе и т.п.

По принципу действия электрические усилители делятся на две группы. Первую весьма большую группу составляют усилители, в основу которых положен усилительный элемент (электронная лампа, транзистор, интегральная микросхема, управляемая индуктивность, управляемая емкость). В таких усилителях маломощный входной сигнал управляет передачей гораздо большей энергии от источника питания в полезную нагрузку, присоединенную к выходу усилителя. В соответствии с типом управляющего (усилительного) элемента различают ламповые, транзисторные, комбинированные, на интегральных микросхемах, магнитные, диэлектрические усилители. Транзисторные, ламповые, комбинированные и усилители на интегральных микросхемах часто объединяют названием электронные усилители, так как принцип их действия основан на электронных процессах в вакууме и полупроводнике.

Электронные усилители можно разделить по следующим признакам:

виду активного элемента - ламповые, транзисторные, на туннельных диодах, параметрических диодах;

диапазону частот - электрометрические, постоянного тока, низкой частоты, радио- и промежуточных частот, СВЧ;

ширине полосы частот - узкополосные, широкополосные;

виду сигнала - гармонические, импульсные;

электрическому параметру - напряжение, ток, мощность;

типу нагрузки - резисторные, резонансные.

По виду амплитудно-частотной характеристики (АЧХ) выделяют усилители постоянного тока, нижняя граница полосы пропускания которых равна нулю; усилители переменного тока; селективные (узкополосные) усилители, АЧХ которых имеет вид частотной характеристики избирательного полосового фильтра; апериодические (широкополосные, импульсные) усилители, полоса усиления которых соизмерима со значением центральной частоты пропускания. С точки зрения спектрального диапазона усиливаемого сигнала выделяют усилители звуковой (низкой) частоты (УЗЧ, УНЧ); усилители промежуточной частоты (УПЧ), усилители высокой частоты (УВЧ) радиоприёмных устройств. Кроме того возможна классификация усилителей по мощности, режимам работы, выполнению специальных функций.

Управляющий (усилительный) элемент вместе с резисторами, конденсаторами и другими деталями схемы принято называть усилительным каскадом. При недостаточном усилении сигнала одним каскадом используется соединение нескольких каскадов, выполняющих роль предварительного усиления и обеспечивающих работу мощного выходного каскада. Исходя из этого различают однокаскадные и многокаскадные усилители. Каскады нумеруются в возрастающем порядке от входа к выходу усилителя, при этом первый каскад от входа называется входным, а последний - выходным (оконечным).

Основными характеристиками и параметрами усилителей систем автоматического управления являются характеристика управления, динамические характеристики, коэффициент усиления мощности, входное и выходное сопротивления, коэффициент полезного действия (для выходных каскадов), уровень собственных шумов.

Характеристики управления усилителей, применяемых в автоматике, чаще всего нелинейные и могут быть, в частности, с зонами нечувствительности и насыщения; с зонами нечувствительности, насыщения и неоднозначностью; релейного типа. Следует отметить, что от усилителя в ряде случаев требуется существенно нелинейная (релейная) зависимость между выходной и входной величинами. В релейном режиме практически может работать любой усилитель, при этом часто используется релейный режим работы электронных и магнитных усилителей. Так, например, транзисторные усилители в релейном режиме широко применяются в системах импульсного управления электродвигателями и электромагнитными механизмами