Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 11.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
496.76 Кб
Скачать

11.6.Квантовые свойства света.

Квант (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения[1] — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты   может принимать значения  , где   — редуцированная постоянная Планка, а   — целое число. В этом случае   имеет смыслэнергии кванта излучения (иными словами, фотона), а   — смысл числа́ этих квантов (фотонов). В смысле, близком к этому, термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей её основу. Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой.

Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механикаквантовая теория поляквантовая оптика и т. д.). Широко применяется терминквантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется».

Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц, соответствующихбозонным полям взаимодействия (фотон — квант электромагнитного поляфонон — квант поля звуковых волн в кристаллегравитон — гипотетический квант гравитационного поляи т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.

Кроме того, по традиции «квантом действия» иногда называют постоянную Планка. В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной единицей измерения действия и других физических величин такой же размерности (например, момента импульса).

Открытие фотоэффекта началось с наблюдения Г.Герца (1887г.): э лектрический пробой воздуха происходит при меньшем напряжении, если освещать шары разрядника ультрафиолетовым излучением. В дальнейшем выяснилось, что причина этого – вырывание электронов под действием падающего света. Это явление назвалифотоэффектом. А.Г.Столетов подверг фотоэффект систематическому экспериментальному иследованию и установил ряд закономерностей этого явления (выдержки из статьи). Оказалось, что явление основано на удалении отрицательного электричества с поверхности металла под действием ультрафиолетового света. В его мночисленных опытах, а также экспериментах Ф.Ленарда, О.Ричардсона, К.Комптона, Р.Милликена (фотография установки), А.Ф.Иоффе, П.И.Лукирского и С.С.Прилежаева исследованы все характерные свойства явления. Но объяснение этого эффекта трудно далось физикам.

Посмотрим, к каким выводам мы придем, какие закономерности предскажем, находясь в рамках классической физики (конец 19-го века – начало 20-го).

Электроны должны быть связаны в твердом теле, иначе сколь угодно малое электрическое поле приводило бы к их эмиссии. Поэтому для выхода электронов надо сообщить им дополнительную энергию, например, нагреванием тела (термоэмиссия). При фотоэффекте энергия приобретается за счет электромагнитного поля. Пусть E = E0cos(ωt) – напряженность электрического поля в электромагнитной волне. Тогда можно записать уравнение движения электрона в этом поле: md²x/dt² = eE0cos(ωt). Интегрирование дает для скорости электрона v ~ E0, а кинетическая энергия зависит от параметров падающей волны как Te ~ E022. Если эта энергия больше работы выхода из металла Te > eφ, электрон может покинуть образец. Сразу же напрашиваются по крайней мере три вывода о свойствах явления:

  1. Чем выше интенсивность световой волны E02, тем больше энергия электронов Te.

  2. Вырывание электронов носит пороговый характер. Условие Te > eφ не может быть выполнено при малых E02.

  3. При постоянной интенсивности увеличение частоты падающей волны ω снижает энергию выбиваемых электронов Te.

  4. Испускание электронов веществом под действием света называется внешним фотоэффектом.

C А.Г. Столетов (1988 г.) экспериментально исследовал фотоэффект. Схема опыта представлена на рис.1. Плоский конденсатор, одной из пластин, которого служила медная сетка С, а в качестве второй цинковая пластина К, был включен через гальванометр G в цепь аккумуляторной батареи.Напряжение между пластинами измерялось вольтметром. При освещении отрицательно заряженной пластины К светом, в цепи возникал электрический ток, называемый фототоком.

На рис. 2. приведены зависимости фототока I от напряжения U между электродами при различных интенсивностях света (энергетической освещенности E) .

Столетов установил следующие закономерности внешнего фотоэффекта:

Максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности.

Для каждого вещества (катода) существует красная граница фотоэффекта, т.е. минимальная частота v0, при которой еще возможен фотоэффект.

Фототок насыщения пропорционален энергетической освещенности Е катода.

Первые два закона не удается объяснить на основе классической теории, согласно которой вырывание электронов из катода является результатом их "раскачивания" электромагнитной волной, которое должно усиливаться при увеличении интенсивности света.

Внешний фотоэффект хорошо объясняется квантовой теорией. Согласно этой теории, электрон получает сразу целиком всю энергию фотона e=hv, которая расходуется на совершение работы выхода электрона из вещества (катода) и на сообщение электрону кинетической энергии:

.(7)

Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта.

Из (7) следуют все законы Столетова. В частности, максимальная начальная скорость электронов определяется из соотношения  , т.е зависит только от частоты v и материала катода (АВЫХ).

Красная граница v0 соответствует vmax=0

hv0=AВЫХ,v0=AВЫХ/h (8)

При v>v0 (или при l<l0) фотоэффект наблюдается, при v<v0 (или при l>l0) - фотоэффект не наблюдается.