- •Информационные технологии в экономике
- •Новосибирск - 2006
- •1.2. Основные понятия и сетевая терминология
- •1.3. Модель взаимодействия открытых систем
- •1.4. Телекоммуникационные системы – основные функции и компоненты
- •1.5. Топология локальной сети
- •1.6. Технологии функционирования локальной сети
- •1.7.Сетевые операционные системы
- •1.7.1. Структура сетевой операционной системы
- •1.7.2. Сетевые ос фирмы Novell
- •1.7.5. Сетевые ос фирмы Microsoft
- •1.8. Беспроводные локальные сети.
- •1.8.1. Стандарты семейства 802.11 (wi-Fi)
- •1.8.2. Стандарты семейства 802.15
- •1.8.3. Стандарты семейства 802.16 (WiMax)
- •1.8.4. Организация беспроводной сети для малого и среднего бизнеса
- •1.8.5. Технология mimo
- •Глава 2. Интернет
- •2.1. Что такое интернет
- •2.2. История интернета
- •2.3. Браузеры
- •2.4. Типы сервисов интернета
- •2.4.1. Электронная почта
- •2.4.2. Сетевые новости Usenet
- •2.4.3. Списки рассылки
- •2.4.5.Www (World Wide Web - всемирная паутина)
- •2.4.6.Сервис telnet.
- •2.5. Доменная адресация в интернете
- •2.6. Маршрутизация в сетях tcp/ip
- •2.7. Организация tcp/ip
- •2.8. Язык Java
- •2.9. Поисковые системы в интернете
- •2.9.1. Классификация и особенности поисковых систем
- •2.9.2. Электронные справочники глобального масштаба
- •2.9.3. Глобальные поисковые системы
- •2.9.4. Российские справочники ресурсов Интернет
- •2.9.5. Российские поисковые системы
- •2.9.6. Основы информационного поиска в интернете
- •2.10. Некоторые аспекты применения Web-технологий Проблемы интернета
- •Интранет - информационное обслуживание на основе интернета
- •Поиск информации с применением серверов глобального поиска и каталогов
- •Глава 3. Программное обеспечение создания web-сайтов
- •3.1. Введение
- •Html-редакторы: от "Блокнота" до ...
- •3.2. Основы html Первое знакомство с тэгами
- •Атрибуты тэгов
- •Метки и гиперссылки
- •1. Переход к другому документу.
- •2. Перемещение в пределах документа.
- •Форматирование текста
- •Изображения
- •Глава 4. Информационные системы организации
- •4.1. Управление информационными системами
- •4.2. Информационные потоки в системах управления
- •4.3. Структура и классификация информационных систем
- •Заключение
- •Глава 5. Информационные технологии в органах государственной власти и местного самоуправления1 Введение. Информационные технологии и эффективность системы государственного управления
- •Составляющие эффективности системы государственного управления
- •Оценка потребности в системах электронного делопроизводства и документооборота
- •Информационные технологии и эффективность системы государственного управления
- •Составляющие эффективности системы государственного управления
- •Оценка потребности в системах электронного делопроизводства и документооборота
- •5.1. Документооборот и делопроизводство в органе власти Документооборот как основа деятельности органа власти. Определение терминов
- •Автоматизация бумажного документооборота и делопроизводства
- •Подготовка документов
- •Организация работы небольшого коллектива
- •Средства обеспечения коллективной работы больших рабочих групп
- •Архивное хранение
- •Реализация электронного документооборота
- •Что необходимо для построения электронного документооборота
- •5.2. Автоматизация обмена документами между органами власти
- •Форматы и стандарты обмена
- •Обеспечение гарантированной доставки
- •Аутентификация и конфиденциальность
- •Архитектура системы Центров обмена документами
- •Программные средства
- •5.3. Организация взаимодействия органов государственной власти с гражданами и предприятиями
- •Обмен документами с предприятиями
- •Налоговые декларации, отчеты, корреспондеция
- •Обеспечение доступа к публичной информации
- •Работа с обращениями граждан и организаций
- •5.4. Системы эдд для органов власти разного уровня Решение для муниципальных и других органов власти, имеющих небольшой объем документооборота
- •5.11. Однопользовательское решение
- •Решение для местного органа самоуправления
- •Решение для территориального образования (субъекта федерации)
- •Решение для федерального ведомства с территориальными подразделениями
- •Глава 6. Основы современных баз данных Введение
- •6.1. Файловые системы
- •6.1.1. Структуры файлов
- •6.1.2. Именование файлов
- •6.1.3. Защита файлов
- •6.1.4. Режим многопользовательского доступа
- •6.2. Области применения файлов
- •6.3. Потребности информационных систем
- •6.4. Функции субд.
- •6.4.1. Непосредственное управление данными во внешней памяти
- •6.4.2. Управление буферами оперативной памяти
- •6.4.3. Управление транзакциями
- •6.4.4. Журнализация
- •6.4.5. Поддержка языков бд
- •6.5. Типовая организация современной субд
- •6.6. Современные направления исследований и разработок
- •Глава 7. Экспертные системы понятие и задача применения экспертной системы.
- •Экспертные системы, методика построения
- •Экспертные системы, параллельные и последовательные решения.
- •Пример эс, основанной на правилах логического вывода и действующую в обратном порядке.
- •Часть 1.
- •Часть 2.
- •Часть 3.
- •Часть 4.
- •Часть 5.
- •Глава 8. Управление деятельностью в сфере информационных технологий
- •Изменение операционной среды организации
- •Другие формы организации управления операциями ит
- •Разработка операционной стратегии
- •Технологическое планирование
- •Управление мощностями ит
- •Управление персоналом, занятым операционной деятельностью в сфере ит
- •Факторы отбора персонала
- •Человеческие факторы в управлении персоналом
- •Планирование операционной деятельности и контроль Формирование целей
- •Формирование приоритетов
- •Процессы управления информационными технологиями
- •Текущее управление ит
- •Операционные вопросы
- •Увязка с системой текущего управления предприятия
- •Учет характеристик внедряемых ит
- •Планирование ит Факторы, вызывающие потребность в планировании ит
- •Требования к планированию на различных этапах внедрения ит
- •Факторы, влияющие на результативность планирования ит
- •Аудит информационных технологий
- •Этические и социальные последствия внедрения ит
- •Анализ этических и социальных последствий внедрения ит
- •Ключевые технологические тенденции, которые порождают этические вопросы
- •Этика в информационном обществе
- •Базовые понятия: ответственность, подотчетность и обязанности
- •Этический анализ
- •Этические принципы
- •Профессиональный кодекс поведения
- •Влияние информационных технологий на моральные и правовые нормы
- •Информационные права: конфиденциальность и свобода в информационном обществе
- •Права собственности: интеллектуальная собственность
- •Корпоративный кодекс этики в области программного обеспечения
- •Подотчетность, обязательства и контроль
- •Качество систем: качество данных, системные ошибки
- •Качество жизни:справедливость, доступность, границы
- •Создание, использование и распространение вредоносных программ для эвм
- •Нарушение правил эксплуатации эвм, системы эвм или их сети (ст. 274 ук)
- •Здоровье нации: стрессы повторяющихся действий, зрительный синдром и техностресс
- •Управленческие действия: корпоративный кодекс этики
- •Вопросы к экзамену по главе 1 и 2.
- •Глава 1.
- •Глава 2.
- •Приложение к Главе 1.
- •1.1. Беспроводные стандарты 802.11
- •1.2. Безопасность в Wi-Fi сетях
- •Приложение к главе 2.
- •2.1. Протоколы интернета
- •2.1.1. Семейство протоколов tcp/ip
- •2.1.2. Ethernet-кадр
- •2.1.3. Протокол slip
- •2.1.4. Протокол ppp
- •2.1.5. Межсетевой протокол ip
- •2.1.6. Протокол udp
- •2.1.7. Протокол tcp
- •2.1.8. Другие протоколы.
- •2.2. Секреты Google Dance
- •2.3. Поиск по скрытой части интернета
- •2.4. Глоссарий терминов по поисковым системам и каталогам
- •Приложение к главе 5.
- •5.1. Словарь терминов
2.2. История интернета
В конце 1960-х годов Министерство Обороны США начало эксперименты по соединению компьютеров друг с другом и с людьми с помощью телефонных линий, используя фонды Агентства Перспективных Проектов Исследований Министерства Обороны США (U.S Defense Department's Advanced Research Projects Agency - ARPA). Была спроектирована сеть, которая явилась предтечей Internet, – она называлась ARPAnet. ARPAnet была экспериментальной сетью, – она создавалась для поддержки научных исследований в военно-промышленной сфере, – в частности, для исследования методов построения сетей, устойчивых к частичным повреждениям, получаемым, например, при бомбардировке авиацией и способных в таких условиях продолжать нормальное функционирование. Это требование дает ключ к пониманию принципов построения и структуры Internet. В модели ARPAnet всегда была связь между компьютером-источником и компьютером-приемником (станцией назначения). Сеть предполагалась ненадежной: любая часть сети может исчезнуть в любой момент.
ARPAnet использовала технологию передачи данных, которая называется "коммутация пакетов" (packet switching). При этой технологии передаваемое по сети сообщение разбивается на небольшие пакеты, каждый из которых имеет свой адрес назначения. Пакеты перемещаются по сети независимо. Ответственность за поддержание связи возложена не на саму сеть, а на входящие в сеть компьютеры. Основной принцип состоял в том, что любой компьютер мог связаться как равный с равным с любым другим компьютером. Сеть задумывалась и проектировалась так, чтобы от пользователей не требовалось никакой информации о конкретной структуре сети. Для того, чтобы послать сообщение по сети, компьютер должен поместить данные в некий "конверт'', называемый, например, IP, указать на этом "конверте'' конкретный адрес в сети и передать получившиеся в результате этих процедур пакеты в сеть.
В семидесятых годах при поддержке ARPA были разработаны правила, или протоколы, пересылки данных между различными компьютерными сетями. Эти протоколы с общим именем ‘TCP/IP’ сделали возможным разработку всемирной Сети, которую мы сейчас имеем и которая соединяет компьютеры всех видов через национальные границы. К концу семидесятых были разработаны связи между ARPANet и ее контрагентами в других странах. Мир оказался связан в одно целое паутиной компьютерных сетей.
Весь опыт работы Internet подтвердил, что большинство принятых решений оказались разумными и верными. Активисты Internet начали устанавливать IP-программное обеспечение на все возможные типы компьютеров. Вскоре оно стало наиболее приемлемым способом для связи разнородных компьютеров. Такая схема понравилась правительству и университетам, которые проводят политику покупки компьютеров у различных производителей. Каждый покупал тот компьютер, который ему нравился и вправе был ожидать, что сможет работать по сети совместно с другими компьютерами.
Примерно в это время (около 1980 г.) разработчики операционной системы Unix вышли с новой возможностью обмена информацией между двумя компьютерами по телефонным линиям, названной UUCP (Unix-to-Unix Connection Protocol). Том Траскотт, Джим Эллис, Стив Белловин и Стив Дэниел написали программное обеспечение конференций и связали компьютеры в университете Дьюка и Северной Каролины.
Слухи разошлись быстро, и в 1981-м году аспирант из Беркли Марк Хортон и старшеклассник местной школы Мэтт Гликман выпустили новую версию, которая добавила новые возможности и позволила осуществлять пересылку больших объемов информации - исходная программа из Северной Каролины разрешала только передачу нескольких статей на группу новостей в день. Сегодня Usenet связывает десятки тысяч мест и систем по всему миру, от огромных компьютеров до компьютеров Amiga.
Примерно 10 лет спустя после появления ARPAnet появились Локальные Вычислительные Сети (LAN), например, такие как Ethernet и др. Одновременно появились компьютеры, которые стали называть рабочими станциями. На большинстве рабочих станций была установлена операционная система UNIX. Эта ОС имела возможность работы в сети с протоколом IP. В связи с возникновением принципиально новых задач и методов их решения появилась новая потребность: организации желали подключиться к ARPAnet своей локальной сетью. Примерно в то же время появились другие организации, которые начали создавать свои собственные сети, использующие близкие к IP коммуникационные протоколы. Стало ясно, что все только выиграли бы, если бы эти сети могли общаться все вместе, ведь тогда пользователи из одной сети смогли бы связываться с пользователями другой сети.
Одной из важнейших среди этих новых сетей была NSFNET, разработанная по инициативе Национального Научного Фонда (National Science Foundation – NSF). В конце 80-х NSF создал пять суперкомпьютерных центров, сделав их доступными для использования в любых научных учреждениях. Было создано всего лишь пять центров потому, что они очень дороги даже для богатой Америки. Именно поэтому их и следовало использовать кооперативно. Возникла проблема связи: требовался способ соединить эти центры и предоставить доступ к ним различным пользователям. Сначала была сделана попытка использовать коммуникации ARPAnet, но это решение потерпело крах, столкнувшись с бюрократией оборонной отрасли и проблемой обеспечения персоналом.
Тогда NSF решил построить свою собственную сеть, основанную на IP технологии ARPAnet. Центры были соединены специальными телефонными линиями с пропускной способностью 56 KBPS (7 KB/s). Однако, было очевидно, что не стоит даже и пытаться соединить все университеты и исследовательские организации непосредственно с центрами, т.к. проложить такое количество кабеля – не только очень дорого, но практически невозможно. Поэтому решено было создавать сети по региональному принципу. В каждой части страны заинтересованные учреждения должны были соединиться со своими ближайшими соседями. Получившиеся цепочки подсоединялись к суперкомпьютеру в одной из своих точек, таким образом, суперкомпьютерные центры были соединены вместе. В такой топологии любой компьютер мог связаться с любым другим, передавая сообщения через соседей.
Это решение было успешным, но настала пора, когда сеть уже более не справлялась с возросшими потребностями. Совместное использование суперкомпьютеров позволяло подключенным общинам использовать и множество других вещей, не относящихся к суперкомпьютерам. Неожиданно университеты, школы и другие организации осознали, что заимели под рукой море данных и мир пользователей. Поток сообщений в сети (трафик) нарастал все быстрее и быстрее пока, в конце концов, не перегрузил управляющие сетью компьютеры и связывающие их телефонные линии. В 1987 г. контракт на управление и развитие сети был передан компании Merit Network Inc., которая занималась образовательной сетью Мичигана совместно с IBM и MCI. Старая физически сеть была заменена более быстрыми (примерно в 20 раз) телефонными линиями. Были заменены на более быстрые и сетевые управляющие машины.
Сотни, а потом и тысячи колледжей, исследовательских организаций и правительственных ведомств стали присоединять свои компьютеры к этой всемирной сети. Некоторые предприимчивые любители и компании, не желающие платить высокие цены за доступ к Internet (или не имеющие возможности соответствовать жестким правительственным требованиям для получения такого доступа), научились присоединять свои системы к Internet даже только ради электронной почты и конференций. Некоторые из этих систем стали предлагать доступ к Internet для всех. Теперь любой владелец компьютера и модема - и некоторой толики настойчивости может открыть себе окно в этот мир.
В девяностых годах сеть продолжала разрастаться экспоненциально. По некоторым оценкам, объем пересылаемых сообщений растет на 20 процентов в месяц. В ответ на это правительство и другие пользователи пытаются в последние годы расширить саму Сеть. Когда-то основной "хребет" Сети в Соединенных Штатах передавал данные со скоростью 56000 бит в секунду. Это оказалось слишком медленно для все возрастающего объема пересылаемых данных, и максимальная скорость возросла до 1.5 миллиона, а затем - до 45 миллионов бит в секунду. Но даже раньше, чем Сеть оказалась в состоянии достичь подобной скорости, эксперты по Сети стали выискивать способы перекачки данных со скоростью порядка 2 миллиардов бит в секунду - это достаточно, чтобы перегнать через всю страну Британскую Энциклопедию за одну или две секунды.
Другое серьезное новшество - разработка коммерческих служб, которые предоставляют услуги по межсетевому обмену, сравнимые по скорости с соответствующими услугами правительственной системы.
Теодор Хольм Нельсон считается отцом идеи гипертекста в том виде, в котором он сейчас существует. Гипертекст - это обычный текст, содержащий ссылки как на собственные фрагменты, так и на другие тексты. При наличии сети тексты, связанные друг с другом ссылками, можно размещать на различных, территориально удаленных компьютерах, и создавать и редактировать тексты могут разные люди. Таким образом, создается "паутина" взаимосвязанных текстов, способная стать гигантским информационным хранилищем.
В 1988 году проект гипертекстовой системы Теодора Нельсона обрел источник финансирования у Джона Уокера, основателя фирмы Autodesk. Решающий шаг в создании WWW совершил Тим Бернерс-Ли. В конце восьмидесятых годов он, работая в Лаборатории физики элементарных частиц европейского центра ядерных исследований, более известного под названием CERN, занимался проблемами применения идей гипертекста для построения информационной среды, которая решила бы проблемы обмена информацией между физиками, работавшими в большом неоднородном CERN"е, и их партнерами в других странах. CERN был уникальным местом, одним из оживленных перекрестков интернета. Еще до WWW Бернерс-Ли создал гипертекстовую систему Enquire, которая была, по сути, записной книжкой. В ней, как и впоследствии в WWW, была заложена идея о том, что компьютеры должны представлять информацию подобно тому, как она представляется в нашем мозгу, т.е. ассоциативно.
Проект, который в конечном счете привел к созданию Всемирной Паутины и того явления, которое мы теперь называем Web-технологией, стартовал в CERN в 1989 году. Бернерс-Ли как раз и сотворил Всемирную Паутину, заимствовав идею гипертекста у Нельсона и творчески развив ее. Он выпустил начальный протокол передачи гипертекстов, управляющий движением информации в Паутине, разработал универсальный указатель ресурсов как единую систему адресации, объединившую в себе большинство существующих в интернете технологий поиска и связи, наконец, он создал язык разметки гипертекстов.
Гипертекст позволил представить разнообразную информацию в виде составных объектов разной природы (текст, графика, аудио и видео). Гипертекст достаточно прост и естественен для восприятия. Данные, организованные в форме гипертекста, предоставляют доступ множеству потребителей информации к единому массиву структурированной, согласованной и изменяющейся в реальном времени информации.
