
- •Цифровые схемы
- •1. Логические сигналы и вентили
- •Для не специалистов в области электроники надежда остается
- •3.2. Семейства логических схем
- •3.3. Кмоп-логика
- •3.3.1. Логические уровни кмоп-схем
- •3.3.3. Базовая схема кмоп-инвертора
- •Импеданс и сопротивление
- •Что заключено в обозначениях?
- •3.3.4. Кмоп-схемы и-не и или-не
- •Сравнение схем и-не и или-не
- •3.3.5. Коэффициент объединения по входу
- •3 .3.6. Неинвертирующие вентили
- •3.3.7. «Моп-схемы и-или-нЕи или-и-не
- •3.4. Электрические свойства кмоп-схем
- •3.4.1. Общий обзор
- •3.4.2. Справочные данные и спецификация
- •Не бойтесь!
- •Примечания:
- •Что означают числа?
- •3.5. Электрические характеристики кмоп-схем в установившемся режиме
- •3.5.1. Логические уровни и помехоустойчивость
- •3.5.2. Поведение схемы с активными нагрузками
- •Теорема тевенина
- •Правда о потребляемой мощности
- •3.5.3. Поведение схемы с неидеальными входными сигналами
- •3.5.4. Коэффициент разветвления по выходу
- •3.5.5. Влияние нагрузки
- •3.5.6. Неиспользуемые входы
- •Коварные ошибки
- •3.5.7. Броски тока и развязывающие конденсаторы
- •3.5.8. Как испортить кмоп-схему
- •Недопускайте неаккуратного обращения!
- •3.6. Динамические свойства кмоп-схем
- •3.6.1. Длительность переходного процесса
- •Не все так просто!
- •3.6.2. Задержка распространения
- •3.7. Другие варианты входных и выходных цепей кмоп-схем
- •3.7.1. Логические ключи
- •3.7.2. Триггер Шмитта
- •3.7.3. Схемы с тремя состояниями
- •Приведите в порядок передачу данных
- •Юридическая справка
- •3.7.4. Схемы с открытым стоком
- •*3.7.5. Подключение светодиодов
- •Сопротивления резисторов
- •*3.7.6. Шины с несколькими источниками сигналов
- •3.7.7. Монтажная логика
- •*3.7.8. Резисторы, соединяющие выходы схем с шиной питания
- •Допущение, касающееся открытого стока
- •3.8. Семейства схем кмоп-логикн
- •3.8.1. Семейства схем нс и нст
- •3.6.2. Семейства схем vhc и vhct
- •3.6.8. Электрические характеристики схем семейств нс, hct5vhc и vhct
- •Обратите внимание на систему обозначений
- •Экономия энергии
- •М ощность, потребляемая кмоп- и ттл-схемами
- •3.8.4 Схемы семейств fct и fct-t
- •3.8.5. Электрические характеристики схем семейства fct-t
- •Сверхбыстрая коммутация
- •3.9. Логические схемы на биполярных транзисторах
- •3.9.1. Диоды
- •Стрелок, действительно, две
- •Стабилитроны
- •3.9.2. Диодная логика
- •3.9.3. Биполярные транзисторы
- •3.9.4. Транзисторный инвертор
- •3.9.5. Транзисторы Шоттки
- •3 .10. Транзисторно-транзисторная логика
- •3.10.1. Базовый ттл-вентиль и-не
- •Г де же транзистор q1?
- •Снова броски тока
- •3.10.2. Логические уровни и запас помехоустойчивости
- •3.10.3. Коэффициент разветвления по выходу
- •Асимметрия выхода ттл-схем
- •Обожженные пальцы
- •3.10.4. Неиспользуемые входы
- •Плавающие входы ттл
- •Почему применяется резистор?
- •3.10.5. Ттл-схемы других типов
- •3.11. Семейства ттл-схем
- •3.11.1. Первые семейства ттл-схем
- •3.11.2. Ттл-схемы с транзисторами Шоттки
- •3.11.3. Характеристики ттл-схем
- •3.11.4. Справочные данные для ттл-схем
- •Примечания:
- •*3.12. Сопряжение кмоп- и ттл-схем
- •3.13. Схемы низковольтовой кмоп-логики и их сопряжение с другими схемами
- •*3.13.1. Lvttl- и lvcmos-логика с напряжением питания 3.3 в
- •*3.13.2. Входы, допускающие напряжение 5 в
- •*3.13.3. Выходы, допускающие напряжение 5 в
- •*3.13.4. Сопряжение ttl-схем и схем с уровнями lvttl: сводка результатов
- •3.13.5. Логические схемы с напряжениями питания 2.5Ви1.8в
- •3.14. Эмиттерно-связанная логика
- •3.14.1. Базовая схема эсл
- •3.14.2. Семейства эсл-схем 10к/1 он
- •*3.14.4. Эсл-схемы с положительным напряжением питания
- •Обзор литературы
- •Упражнения
3.4. Электрические свойства кмоп-схем
В трех следующих параграфах обсуждаются электрические, а не логические аспекты работы КМОП-схем. Если вы проектируете реальные схемы, в которых используются КМОП- или другие логические семейства, то понимание рассматриваемых здесь вопросов является важным. Большая часть материала этого параграфа нацелена на то, чтобы служить основанием для уверенности, что «цифровая абстракция» действительно справедлива применительно к данной схеме. В частности, разработчик схемы или системы должен обеспечить выполнение ряда условий в отношении предельных технических характеристик (engineering design margins), то есть гарантировать, что схема будет работать надлежащим образом даже в самых плохих условиях.
3.4.1. Общий обзор
В параграфах 3.5-3.7 мы рассмотрим следующие вопросы:
Логические уровни напряжения. Гарантируется, что выходные напряжения работающих в нормальных условиях КМОП-устройств будут принадлежать диапазонам низкого и высокого уровней, определенным соответствующим образом. Принадлежность входных напряжений диапазонам низкого и высокого уровней они распознают в несколько более широких пределах. Изготовители КМОП-схем очень тщательно определяют эти диапазоны и условия эксплуатации, чтобы гарантировать совместимость различных элементов одного и того же семейства и обеспечить (при соблюдении определенных предосторожностей) возможность взаимодействия устройств из разных семейств.
Запас помехоустойчивости по постоянному току. Неотрицательный запас помехоустойчивости по постоянному току гарантирует, что наибольшее напряжение низкого уровня на выходе всегда меньше самого высокого напряжения, которое на входе может надежно интерпретироваться как низкий уровень, а наименьшее напряжение высокого уровня на выходе всегда больше, чем самое низкое напряжение, которое на входе может надежно интерпретироваться как высокий уровень. Ясное представление о запасе помехоустойчивости особенно важно в тех случаях, когда используются схемы из нескольких различных семейств.
Коэффициент разветвления по выходу. Этот параметр относится к числу и типу входов, подключаемых к данному выходу. Если к выходу схемы подключено слишком много входов, то ее запас помехоустойчивости по постоянному току может оказаться недостаточным. Кроме того, коэффициент разветвления по выходу может влиять на скорость, с которой выходной сигнал изменяется от одного значения к другому.
Быстродействие. Время, необходимое для изменения выходного сигнала КМОП-схемы от низкого уровня до высокого, или наоборот, зависит как от внутренней структуры устройства, так и от характеристик других устройств, которыми управляет эта схема, в том числе от проводов или проводников печатной платы, подключенных к данному выходу. Мы рассмотрим две характеристики «быстродействия»: время перехода и задержку распространения.
Потребляемая мощность. Мощность, потребляемая КМОП-схемой, зависит от нескольких факторов: от ее внутренней структуры, от значений сигналов, поступающих на ее входы, от свойств других устройств, которыми управляет данная схема, и от того, как часто ее выходной сигнал изменяется между низким и высоким уровнями.
Шум. Основной причиной указания предельных технических характеристик является необходимость гарантировать работоспособность схемы в присутствии шума. Шум может создаваться рядом источников; некоторые из них перечислены ниже, начиная с наименее вероятных, вплоть до наиболее вероятных (хотя это и может показаться неожиданным):
космические лучи;
магнитные поля от близко расположенного оборудования;
пульсации напряжения источника питания;
процесс переключения в самих логических схемах.
Электростатический разряд. Верите ли вы, что КМОП-схему можно вывести из строя, всего лишь касаясь ее?
Выходы с открытым стоком. У некоторых КМОП-схем отсутствуют р-канальные транзисторы на выходе, нормально подключающие выход к источнику питания. Когда выходной сигнал должен иметь высокий уровень, выход такой схемы ведет себя подобно «отсутствию связи», что в некоторых случаях бывает полезно.
Выходы с тремя состояниями. Некоторые КМОП-схемы имеют дополнительный управляющий вход «разрешение выхода» (output enable), который можно использовать для одновременного запирания p-канального и n-канального выходных транзисторов. Можно образовать шину со многими источниками сигналов, объединяя такие выходы нескольких схем, при условии, что какое-то логическое управляющее устройство обеспечит поступление сигнала разрешения выхода не более, чем на одну из этих схем.