
- •Министерство сельского хозяйства
- •Казахский агротехнический университет им. С.Сейфуллина
- •Кафедра «Теплоэнергетика»
- •Атякшева а.В.
- •Краткий курс лекций
- •5В071700 - «Теплоэнергетика» направление – «Бакалавриат»
- •Лекция № 1. Тема: основные определения термодинамики.
- •Предмет и метод термодинамики
- •Принцип построения термодинамики
- •Основные понятия и определения термодинамики
- •Лекция № 2. Тема: параметры состояния тела.
- •В настоящее время применяют различные температурные шкалы-Цельсия. Реомюра, Фаренгейта, Ренкина, соотношения между которыми приводятся в таблице 2.3
- •Лекция № 3. Тема: идеальный газ. Основные газовые законы.
- •Лекция № 4. Тема: смеси идеальных газов.
- •Лекция № 5. Тема: теплоемкость газов.
- •Теплоемкость газовой смеси
- •Лекция № 6. Тема: первый закон термодинамики. Внутренняя энергия
- •Теплота
- •Первый закон термодинамики
- •Закон сохранения и превращения энергии :
- •Формулировка и уравнение первого закона термодинамики
- •Энтальпия газов
- •Лекция № 7 Тема: основные термодинамические процессы. Основными термодинамическими процессами являются:
- •Метод исследования процессов состоит в следующем:
- •Политропный процесс ( )
- •Тема: второй закон термодинамики.
- •Энтропия идеального газа
- •Тепловая диаграмма (ts-диаграмма)
- •Лекция № 9 Тема: водяной пар. Процессы водяного пара. Уравнение состояния реального газа
- •Водяной пар
- •Сухой насыщенный пар
- •Влажный насыщенный пар
- •Перегретый пар
- •Энтропия пара
- •Лекция № 10 Тема: влажный воздух.
- •Изображение адиабатного процесса
- •Лекция № 11 Тема: круговые процессы. Цикл карно.
- •Цикл Карно. Теорема Карно
- •Теорема Карно
- •Лекция № 12. Уравнение первого закона термодинамики для потока. Истечение газов и паров. Дросселирование.
- •Лекция № 13 Тема: циклы поршневых компрессоров, двс, гту.
- •Теоретическая мощность двигателя для привода компрессора
- •Теоретические циклы поршневых двигателей внутреннего сгорания
- •Циклы газотурбинных установок
- •Лекция № 14
- •1 Паросиловой цикл Ренкина
- •2 Теплофикационный цикл
- •3 Регенеративный цикл
- •4 Цикл воздушной холодильной установки
- •Лекция № 15
Энтропия идеального газа
Энтропия обозначается
буквой S,
.
Основное уравнение для определения изменения энтропии
(3)
Энтропия характеризует наличие теплообмена между рабочим телом и окружающей средой. Если она изменяется, то есть теплообмен между рабочим телом и окружающей средой.
В расчетах используют не абсолютное значение энтропии, а изменение энтропии:
∆s = s 2 – s 1 . (4)
Для газов считают S=0 при нормальных условиях (р=101325 Па, Т=273К или р=760мм.рт.ст. и t = 00С).
Энтропия определяется любой парой ТД параметров состояния:
s = s 1 (p, v), s = s 2 (p, T), s = s 3 (v, T)
По характеру изменения энтропии в равновесном процессе можно судить о том, в каком направлении происходит теплообмен.
Если тело нагревается (∆ q > 0), то его энтропия возрастает (d s > 0).
Если тело охлаждается (∆ q < 0), то его энтропия убывает (d s < 0).
Если тепло не подводитсяк телу (∆ q = 0), то его энтропия постоянна (d s = 0).
Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:
.
Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:
.
Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка.
В действительности принципы существования и возрастания энтропии ничего общего не имеют. Физическое содержание: принцип существования энтропии характеризует термодинамические свойства систем, а принцип возрастания энтропии – наиболее вероятное течение реальных процессов. Математическое выражение принципа существования энтропии – равенство, а принципа возрастания – неравенство. Области применения: принцип существования энтропии и вытекающие из него следствия используют для изучения физических свойств веществ, а принцип возрастания энтропии – для суждения о наиболее вероятном течении физических явлений. Философское значение этих принципов также различно.
В связи с этим принципы существования и возрастания энтропии рассматриваются раздельно и математические выражения их для любых тел получаются на базе различных постулатов.
Вывод о существовании абсолютной температуры T и энтропии s как термодинамических функций состояния любых тел и систем составляет основное содержание второго закона термодинамики и распространяется на любые процессы – обратимые и необратимые.
Тепловая диаграмма (ts-диаграмма)
В инженерной практике используется графическая зависимость Т(s), которая позволяет в Т, s –координатах изображать количество подведенной к системе (или отведенной) теплоты в обратимом процессе в виде площади под кривой процесса, т.е.
,
площадь 1-2- s 2 – s 1
(5)
В TS-диаграмме состояние тела изображается точкой «·», а всякий обратимый процесс – непрерывной линией.
Рисунок 1 – Тепловая диаграмма
Так как энтропия – есть функция состояния произвольной термодинамической системы, то каждое её состояние отображается точкой на плоскости Т, s.