Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
инсулин.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
161.12 Кб
Скачать

Биосинтез, хранение, секреция

Синтез белковых гормонов, как и других белков, находится под генетическим контролем, и типичные клетки млекопитающих экспрессируют гены, которые кодируют от 5000 до 10 000 различных белков, а некоторые высокодифференцированные клетки – до 50 000 белков. Любой синтез белка начинается с транспозиции сегментов ДНК, затем транскрипции, посттранскрипционного процессинга, трансляции, посттрансляционного процессинга и модификации. Многие полипептидные гормоны синтезируются в форме больших предшественников-прогормонов (проинсулин, проглюкагон, проопиомеланокортин и др.). Конверсия прогормонов в гормоны осуществляется в аппарате Гольджи[1 С 500, 2, 3, 4].

Биосинтез инсулина млекопитающих кодируется одним геном (у некоторых видов - двумя), определяющим образование одноцепочечного крупного белка. Ген, контролирующий этот процесс, локализуется на коротком плече 11-й хромосомы. Предшественник инсулина проинсулин представлен одной полипептидной цепью, содержащей 86 аминокислотных остатка; он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсулина считается фракция микросом β-клеток панкреатических островков. Превращение неактивного проинсулина в активный инсулин происходит при перемещении проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 31 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пептида). Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот. Сигнальный пептид проникает в просвет эндоплазматического ретикулума и направляет поступление в просвет эндоплазматического ретикулума растущей полипептидной цепи. Сигнальный пептид отщепляется при образовании молекулы проинсулина специальной пептидазой.

Рис. 2 Конверсия препроинсулина в инсулин

Препроинсулин в микросомах очень быстро превращается в проинсулин, который из цистерн эндоплазматического ретикулума транспортируется в комплекс Гольджи. Период от начала до поступления его в комплекс Гольджи занимает около 20 мин. В комплексе Гольджи происходит конверсия в инсулин. Это энергозависимая реакция, для осуществления которой требуется 30-60 мин.

Конверсия проинсулина в инсулин протекает при участии двух видов протеолитических ферментов (специфические пептидазы): трипсиноподобного фермента и карбоксипептидазы В, которая необходима для отщепления С-терминального фрагмента, в результате чего образуется промежуточная форма проинсулина – интермедиат-1, в котором С-пептид отделен от терминальной группы А-цепи. Существует и другая форма проинсулина (интермедиат-II), где С-пептид отделен от С-конца В-цепи. Образование интермедиата-I происходит при отщеплении двух аминокислот (аргинин и лизин) от a-цепи, а интермедиата II – при отщеплении двух аминокислот (аргинин и аргинин) от В-цепи. У человека образование инсулина из проинсулина в основном происходит через формирование интермедиата-I. Указанные участки молекулы проинсулина (аргинин-лизин и аргинин-аргинин) обладают повышенной чувствительностью к действию протеаз, благодаря чему и осуществляется конверсия проинсулина в инсулин, при этом инсулин и С-пептид находятся в эквимолярных соотношениях.

В секреторных гранулах содержатся проинсулин, интермедиатные формы I и II, инсулин, С-пептид и ионы цинка, причем по мере созревания гранул уменьшается количество проинсулина и увеличивается количество инсулина, при взаимодействии которого с ионами цинка образуются кристаллы. Последние локализуются в центре гранулы и обусловливают повышенную электронную плотность при морфологических исследованиях поджелудочной железы. С-пептид располагается по периферии гранулы. Установлено, что большая часть цинка, содержащегося в островках поджелудочной железы, находится в гранулах и высвобождается в процессе секреции инсулина. В содержимом “созревшей” секреторной гранулы инсулин и С-пептид содержатся в количестве до 94%; проинсулин, интермедиаты I и II, а также ионы цинка - около 6%[1 С 500, 501; 2; 8 С 26, 27].

Секреция инсулина осуществляется путем эмиоцитоза: миграция гранул к мембране b-клеток, слияние гранул с клеточной мембраной, растворение мембраны в месте контакта и, наконец, эмиоцитотическая экструзия гранулы – прорыв содержимого гранулы наружу. Этот процесс транспорта гранул к клеточной мембране осуществляется микротубулярно-ворсинчатой системой. Микротубулы образуются путем полимеризации белковых (тубулиновых) субъединиц, и во многих типах клеток полимеризующиеся канальцы находятся в динамическом равновесии с пулом их субъединиц. цАМФ и ионы кальция, влияющие на секрецию инсулина, изменяют равновесие между субъединицами и микротубулами (микроканальцами) в сторону полимеризации микроканальцев. Не исключено, что это влияние цАМФ на микроканальцевую систему опосредуется через фосфорилирование микроканальцевых белков. Микроканальцы способны сокращаться и расслабляться, перемещая гранулы по направлению к плазматической мембране. Микроворсинки (микрофиламенты), являющиеся составной частью микротубулярно-ворсинчатой системы, расположены по периферии клетки, тесно прилегая к плазматической мембране. При приближении гранулы, содержащей инсулин, к мембране микроворсинки как бы обволакивают ее и подводят к мембране клетки, осуществляя процессы их слияния и растворения мембраны в точке соприкосновения, способствуя тем самым процессу экструзии – опорожнению гранулы, излиянию ее содержимого наружу. Вследствие изменения физических свойств среды происходит отщепление цинка и кристаллический инсулин становится растворимым. Находящиеся в секреторной грануле 3 белка (инсулин, С-пептид и проинсулин) различаются биологической активностью и длительностью существования. Так, период полураспада инсулина составляет 3-10 мин, С-пептида – около 30 мин, проинсулина – около 20-23 мин. Если принять биологическую активность за 100%, то проинсулин обладает 10% активности, интермедиат-I – около 25%, а С-пептид таковой не обладает. В случае нарушения конверсии проинсулина в инсулин (недостаточность соответствующих протеаз) в циркуляцию будет поступать большое количество проинсулина, что может сопровождаться нарушением углеводного обмена различной степени выраженности, вплоть до явного диабета[1 С 501; 2 ].

Синтез и секреция инсулина не являются строго сопряжёнными процессами. Синтез гормона стимулируется глюкозой, а секреция его является Са2+-зависимым процессом и при дефиците Са2+ снижается даже в условиях высокой концентрации глюкозы, которая стимулирует синтез инсулина[1 С 501, 2; 5].

Механизм высвобождения инсулина является многокомпонентной системой, в которой основная роль принадлежит цАМФ и ионам кальция. Активирование процессов высвобождения инсулина сопровождается повышением концентрации внутриклеточного кальция. Под влиянием глюкозы увеличивается перемещение кальция из внеклеточной жидкости внутрь клетки. Изменяются скорость его связывания с кальмодулином и диссоциация комплекса кальций – кальмодулин.

Несмотря на то, что инсулин продуцируется теми же механизмами синтеза пептидов, как и в других клетках, В-клетки считаются уникальными, поскольку синтез и секреция инсулина стимулируется повышением уровня глюкозы в крови. Однако, оказалось, что обеспечение секреции В-клеткой зависит от инсулина в той же мере, как и любые другие клетки организма. В-клетки поджелудочной железы имеют на своей клеточной мембране рецепторы к инсулину. Секретированный инсулин взаимодействует с рецепторами на поверхности, возможно, его же секретировавшей В-клетки. Взаимодействие с В-клеткой стимулирует её основную функцию – синтез инсулина. Следовательно, регуляция секреции инсулина не является уникальным, а подчиняется общим биологическим законам регуляции функции любой клетки. Глюкоза и другие подвергающиеся метаболизму питательные вещества (включая некоторые аминокислоты и жирные кислоты) транспортируются инсулином в b -клетки островков Лангерганса, где в процессе их метаболизма образуется АТФ. Эти энергетические изменения сопровождаются закрытием АТФ-зависимых К+-каналов, в результате чего К+ накапливается внутри клетки, вызывая деполяризацию мембраныи открытие вольтажзависимых Са-каналов, по которымСа2+ в избытке поступает в цитоплазму. В состоянии покоя мембранный потенциал на внутренней поверхности мембраны В-клетки равен –50 -70 мВ. Именно увеличение содержания Са2+ в цитозоле В-клетки и приводит к экзоцитозу (выбросу) из клетки инсулина. Калий и кальций являются важными регуляторами секреции инсулина В-клеткой. Под воздействием избытка кальция происходит открытие калиевых каналов, что приводит к выходу калия из клетки и реполяризации мембраны, в результате чего секреция инсулина прекращается.

В мембранах b -клеток существуют 2 типа калиевых каналов (АТФ-чувствительные и Са-чувствительные), оба из которых участвуют в секреции инсулина. Образовавшийся АТФ вызывает закрытие АТФ-чувствительных калиевых каналов. Это предотвращает выход К+ из клетки, что является результатом накопления в ней положительных зарядов и, соответственно, деполяризации мембраны. По достижении порога (снижение потенциала на 15 мВ) открываются потенциал-чувствительные Са каналы, обеспечивая поток ионов Са2+ в клетки. Са-чувствительные калиевые каналы открываются по мере того, как Са2+ поступает в клетку, благодаря чему К+ выходит из нее, восстанавливая мембранный потенциал.

Считается, что ионы Са2+ обеспечивают секрецию инсулина из секреторных гранул несколькими путями:

1) Положительно заряженные ионы Са2+ облегчают экзоцитоз (инсулин секретируется из клеток именно таким путем), уменьшая электростатическое отталкивание между отрицαтельно заряженными поверхностями плазматической мембраны и мембран секреторных гранул.

2) Са2+ облегчает передвижение гранул внутри клеток, т. к. влияет на функцию сократительных белков, содержащих актин и тубулин (микротрубочек и микрофиламентов).

3) Са2+ связывается с кальмодулином; это активирует фермент аденилатциклазу, катализирующую превращение АТФ в цАМФ. Этот вторичный посредник также образуется в результате прямой активации АЦ гормонами желудочно-кишечного тракта. Циклический АМФ потенциирует секрецию инсулина путем увеличения чувствительности b -клеток к стимулирующему действию кальция.

О клеточных процессах, лежащих в основе увеличения чувствительности b -клеток к Са2+, известно мало. Предполагается, что активируются ферменты (такие как протеинкиназы), влияющие на функционирование микротрубочек и микрофиламентов. Чувствительность b -клеток к Са2+ увеличивается и другими вторичными мессенджерами (инозитолтрифосфатом и диацилглицеролом) предположительно таким же путем. Эти вторичные посредники образуются при взаимодействии нейромедиаторов энтероинсулярной оси (ацетилхолин, холецистокинин) с фосфолипазой С, встроенной в плазматическую мембрану. [1; 2 ]

Глюкоза, поступающая в кровь из желудочно-кишечного тракта, способствует более значительному высвобождению инсулина из β-клеток поджелудочной железы и, естественно, более высокому уровню инсулина в сыворотке крови по сравнению с тем же количеством глюкозы, но введенной внутривенно. Такая разница в высвобождении инсулина в ответ на одинаковое количество глюкозы объясняется тем, что поступившая в желудочно-кишечный тракт глюкоза стимулирует секрецию инсулина не только через повышение ее уровня в крови, но и посредством активизации механизма, включающего секрецию ряда гормонов желудочно-кишечного тракта: гастрина, секретина, панкреозимина, глюкагона, желудочного ингибиторного полипептида, глюкозозависимого инсулинотропного пептида. Белки и аминокислоты также стимулируют высвобождение инсулина. Из аминокислот наиболее выраженное влияние на секрецию инсулина оказывают аргинин и лизин. В контроле секреции инсулина важное место отводится и другим факторам – влиянию симпатической и парасимпатической нервной системы, СТГ, гормонов коры надпочечников, плацентарного лактогена, эстрогенов и др. Адреналин через α2-рецепторы тормозит секрецию инсулина даже на фоне стимуляции глюкозой[1 С 501; 3 С 269; 8 С 28; 9 С 210].

Секреция инсулина в ответ на стимуляцию глюкозой представляет собой двухфазную реакцию, состоящую из стадии быстрого, раннего высвобождения инсулина, называемую первой фазой секреции (продолжительность ее 1-3 мин), и второй фазы (продолжительность ее до 25-30 мин). Первая, ранняя фаза длится около 10 минут, характеризуется пиковым выбросом около 5-7% внутриостровкового содержания инсулина, связана с пулом немедленного реагирования. Его обеспечивают гранулы, прилегающие к мембране β-клетки. Во вторую фазу секреция инсулина происходит постепенно, составляет 93-95% запасов инсулина. Для его выделения необходима АТФ-зависимая мобилизация инсулинсодержащих гранул, перемещающихся постепенно в первый пул с последующим экзоцитозом. В норме в результате первой фазы высвобождается 50-100 секреторных гранул инсулина, а в результате второй фазы β-клетка высвобождает около 40 гранул в минуту. На пике ранней инсулиновой секреции β-клетка высвобождает гранулы с интервалом в 3 секунды, в медленную фазу секреции этот период удлиняется до 10 секунд. Таким образом первая фаза секреции способствует быстрому насыщению клетки субстратами. Ранний пик секреции инсулина играет огромную роль в обеспечении нормального метаболизма глюкозы, хотя составляет всего 10% от всего секретируемого за сутки инсулина. Это способствует быстрому поступлению веществ в клетки. Концентрация инсулина в крови 10-10 - 10-9 М.

Поджелудочная железа человека без диабета постоянно подает небольшими дозами инсулин в кровь, которая транспортирует его к печени, а также к мышечным и жировым клеткам. Фенотипическим признаком функции является колебательный тип секреции В-клеток. У здоровых лиц он наблюдается только натощак и полностью прекращается уже при повышении концентрации глюкозы до 6 ммоль/л. Базальная секреция инсулина у человека колеблется с периодичностью от 8 до 14 минут, с амплитудой колебаний 1,6 mед/мл, при средних значениях 4,6 mед/мл. Пульсовая секреция четко коррелирует с колебаниями уровней С-пептида, глюкагона и секретина. У больных ИНСД и их родственников 1 степени родства, а также у лиц с нарушенной толерантностью к глюкозе были зафиксированы нарушения ранней фазы и пульсирующего характера секреции. Это нарушение секреции инсулина принято считать метаболическим маркером развития заболевания. Исчезновение раннего пика может быть зафиксировано в доклиническом периоде у лиц из группы высокого риска. Люди с ожирением возвращаются к колебательному типу секреции инсулина после потери массы тела.

Инсулин водорастворим и не имеет белка-переносчика в плазме крови[1; 8 С 28].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]