
- •Глава 1. Система автоматического контроля (сак) технологических параметров
- •§1. Некоторые понятия метрологии (науки об измерениях)
- •§2. Общие сведения о Государственной системе приборов
- •§3. Структурная схема системы автоматического контроля (сак)
- •§4. Теплоэнергетические параметры
- •4.1. Контроль давления
- •4.1.1. Классификация приборов для измерения давления
- •4.1.1.1. Жидкостные манометры
- •4.1.1.2. Деформационные манометры
- •4.1.1.3. Электрические манометры
- •4.1.2. Электрические датчики давления «Сапфир»
- •4.2. Контроль температуры
- •4.2.1. Классификация приборов контроля температуры
- •4.2.1.1. Термометры расширения
- •4.2.1.2. Дилатометрические и биметаллические преобразователи
- •Датчики – реле температуры Устройства терморегулирующие дилатометрические тудэ
- •4.2.1.3. Манометрические термометры
- •4.2.1.4. Термоэлектрические термометры
- •4.2.1.5. Термометры сопротивления
- •4.2.2. Пирометры (инфракрасные термометры)
- •Пирометр Thermalert gp
- •4.2.3. Интеллектуальные датчики температуры
- •Интеллектуальные датчики температуры autrol att2100
- •4.2.4. Управляющие устройства
- •4.3. Контроль расхода
- •4.3.1. Сущность измерения расхода по методу
- •4.3.2. Осредняющие напорные трубки
- •4.3.3. Расходомеры обтекания. Ротаметры
- •4.3.4. Тахометрические расходомеры
- •4.3.5. Электромагнитный метод измерения расхода жидкости
- •4.3.6. Вихревые расходомеры
- •4.3.7. Ультразвуковые расходомеры
- •4.3.8. Кориолисовые (массовые) расходомеры
- •4.3.9. Расходомер сыпучих веществ DensFlow
- •4.3.10. Измерение расхода на основе тепловых явлений
- •4.3.10.1. Калориметрические расходомеры
- •4.3.10.2. Термоконвективные расходомеры
- •4.3.10.3. Термоанемометры
- •4.4. Контроль уровня
- •4.4.1. Методы измерения уровня жидкости,
- •Акустический уровнемер зонд-3м
- •Датчики-реле уровня жидкости поплавковые дру-1пм
- •4.4.2. Методы измерения уровня сыпучих материалов, применяемые в химической промышленности
- •4.4.3. Беспроводной интеллектуальный преобразователь
- •§5. Контроль параметров качества (состава и свойств веществ)
- •5.1.1. Масс-спектрометры
- •5.1.2. Хроматографы
- •5.1.3. Универсальный многоканальный газоанализатор автоматического непрерывного контроля «ганк-4»
- •5.1.4. Комплексный анализатор дымовых газов sg700
- •5.1.5. Парамагнитный анализатор кислорода в газах mg8
- •5.1.6. Концентратомер ксо-у2
- •5.2. Определение свойств веществ
- •5.2.1. Измерение плотности жидкостей и газов
- •5.2.2. Измерение вязкости веществ
- •5.2.3. Измерение влажности газов и твердых тел
- •5.2.3.1. Контроль относительной влажности газов
- •Измерительные преобразователи температуры и влажности роса-10
- •5.2.3.2. Контроль влажности твердых (сыпучих) тел
- •5.2.5. Измеритель проводимости sc202
- •5.2.6. Измерение мутности
- •5.2.7. Измерение цвета
- •Технические характеристики TeleFlash Compact:
- •§6. Измерение механических и электрических параметров
- •6.1. Измерение весовых величин
- •6.1.1. Использование тензодатчиков
- •Измерение толщины материалов из диэлектриков
- •6.3. Датчик потускнения факела дмс-100м-пф
- •6.4. Измеритель мощности pr 300
- •6.5. Датчики положения
- •6.5.1. Датчики контроля скорости (дкс)
- •Технические характеристики дкс
- •6.5.2. Оптические датчики метки (дом)
- •Технические характеристики (дом)
- •6.5.3. Оптические бесконтактные выключатели (вбо)
- •Технические характеристики вбо типа т
- •Технические характеристики вбо типа r
- •Технические характеристики вбо типа d
- •6.5.4. Емкостные бесконтактные выключатели
- •Ниже приведены примеры использования емкостных бесконтактных выключателей (рис. 6.29-6.32).
- •Технические характеристики емкостного бесконтактного выключателя
- •6.5.5. Ультразвуковой бесконтактный выключатель
- •6.5.6. Пироэлектрические датчики
- •6.5.7. Сигнализатор движения радиоволновый сдр101п
- •6.6. Волоконно-оптические датчики
- •6.6.1. Волоконно-оптические датчики магнитного поля
- •6.6.2. Измерение давления
- •6.6.3. Измерение температуры
- •6.6.4. Измерение уровня
- •Глава 2. Система автоматического регулирования технологических параметров (сар)
- •§1. Структура сак и сар
- •§2. Сар как совокупность типовых
- •2.1. Динамические звенья сар
- •Усилительное звено
- •Апериодическое звено 1-го порядка
- •Интегрирующее звено (астатическое)
- •Колебательное звено
- •Апериодическое звено 2-го порядка
- •Дифференцирующее звено
- •2.1.1. Необходимые сведения из операционного исчисления
- •2.1.2. Передаточные функции типовых динамических звеньев.
- •2.2. Объект регулирования
- •§ 3. Исполнительные устройства
- •3.1. Иcполнительные механизмы
- •Регулирующие органы
- •3.2.1. Регулирующие клапаны
- •Коаксиальный клапан
- •Клеточный клапан
- •Основные технические данные клеточного клапана серии 41005 зао «дс Контролз»
- •Производитель: зао «дс Контролз», г.Великий Новгород
- •3.2.2. Регулирующие заслонки
- •Шиберные задвижки
- •Учебное пособие
Ниже приведены примеры использования емкостных бесконтактных выключателей (рис. 6.29-6.32).
Рис. 6.29. Контроль уровня сыпучих веществ емкостными датчиками
Рис. 6.30. Контроль содержимого упаковки и счет тары емкостными датчиками
Рис. 6.31. Контроль разрыва ленты емкостными датчиками
Рис. 6.32. Контроль позиционирования объекта емкостными датчиками
Технические характеристики емкостного бесконтактного выключателя
Диапазон номинальных напряжений питания – 12-24 В
Диапазон рабочих напряжений питания – 10-30 В
Номинальный ток – 200 мА
Защита коммутационного элемента – есть
Индикация срабатывания – есть
Температура окружающей среды: -25…+80°С
Расстояние срабатывания: 20 мм
Материал корпуса – полиамид
Масса – 0.2 кг
Производитель: «Сенсор», Екатеринбург.
6.5.5. Ультразвуковой бесконтактный выключатель
Ультразвуковой бесконтактный выключатель состоит из двух функциональных узлов, излучателя и приемника (рис. 6.33).
Рис. 6.33. Ультразвуковой бесконтактный выключатель
Излучатель посылает ультразвуковые импульсы, улавливаемые приемником. При прерывании звукового потока объектом, именяется состояние выхода приемника.
Ультразвуковые бескотактные выключатели способны распознавать объекты любой структуры: жидкости, металлы, порошкообразные материалы, прозрачные объекты из стекла и пластика (рис. 6.34-6.38).
Рис.
6.34. Измерение уровня заполнения
ультразвуковым
бесконтактным
выключателем
Рис.
6.35. Контроль разрыва тросов и проводов
Рис.
6.36. Измерение диаметра рулона с помощью
ультразвукового бесконтактного выключателя
Рис.
6.37.
Контроль
петли
Рис.
6.38.
Подсчет
объектов и контроль промежутков
Ультразвуковые бесконтактные выключатели выполняют свои функции в условиях запыленности, задымленности, тумана. Они не чувствительны, в отличие от других бесконтактных выключателей, к постороннему свету и звуку.
6.5.6. Пироэлектрические датчики
В датчиках этого типа чувствительным элементом служит ферроэлектрический поглотитель падающего потока теплового излучения объекта. Ферроэлектрические материалы обладают постоянным внутренним дипольным моментом. Это означает, что атомные диполи вещества имеют предпочтительное направление электрической поляризации даже в отсутствие внешнего приложенного к материалу электрического поля [23].
При любой температуре ниже точки Кюри внутренняя поляризация ферроэлектрика никак себя не проявляет на поверхности, поскольку ее влияние компенсируется свободными носителями зарядов внутри или вне материала, мигрирующими к поверхностям. Изменения температуры вызывают соответствующие изменения поляризации, порождающие подлежащие измерению вариации поверхностного заряда. В сочетании с подходящей электронной схемой такой чувствительный элемент образует пироэлектрический датчик, выходной величиной которого являются электрический ток или напряжение, пропорциональные скорости изменения температуры [23].
Ферроэлектрические поглотители для наиболее чувствительных пироэлектрических датчиков изготавливаются из нецентросимметричных диэлектриков (например, триглицинсульфата – ТГС, ниобата или танталата лития). Кроме того, нередко используются керамика PZT или пластмассовые пленки из поливинилиденфторида. И этот тип датчиков относится к группе генераторных.
В результате обработки полученной последовательности импульсов микроконтроллер вырабатывает управляющий сигнал, приводящий в действие исполнительный механизм или узел подачи тревоги. Для увеличения пространственной зоны чувствительности датчика перед его оптическим окном обычно устанавливают линзу, фокусирующую ИК-лучи на пластине пироэлектрика. Чтобы получить вероподобную форму чувствительного сектора обзора, применяют зонированную линзу Френеля. Она состоит из множества отдельных фокусирующих участков, каждый из которых формирует свой чувствительный луч, приходящий с определенного направления. В результате при перемещении движущегося объекта из одного луча в другой датчик генерирует переменное напряжение. Подобная верность лучей образуется и в вертикальной плоскости (рис. 6.39). Применяя линзы Френеля специальной структуры, можно варьировать форму лепестков с тем, чтобы получить наилучшие условия для обнаружения объекта в заданном секторе обзора [23].
Рис. 6.39.