
- •Глава 1. Система автоматического контроля (сак) технологических параметров
- •§1. Некоторые понятия метрологии (науки об измерениях)
- •§2. Общие сведения о Государственной системе приборов
- •§3. Структурная схема системы автоматического контроля (сак)
- •§4. Теплоэнергетические параметры
- •4.1. Контроль давления
- •4.1.1. Классификация приборов для измерения давления
- •4.1.1.1. Жидкостные манометры
- •4.1.1.2. Деформационные манометры
- •4.1.1.3. Электрические манометры
- •4.1.2. Электрические датчики давления «Сапфир»
- •4.2. Контроль температуры
- •4.2.1. Классификация приборов контроля температуры
- •4.2.1.1. Термометры расширения
- •4.2.1.2. Дилатометрические и биметаллические преобразователи
- •Датчики – реле температуры Устройства терморегулирующие дилатометрические тудэ
- •4.2.1.3. Манометрические термометры
- •4.2.1.4. Термоэлектрические термометры
- •4.2.1.5. Термометры сопротивления
- •4.2.2. Пирометры (инфракрасные термометры)
- •Пирометр Thermalert gp
- •4.2.3. Интеллектуальные датчики температуры
- •Интеллектуальные датчики температуры autrol att2100
- •4.2.4. Управляющие устройства
- •4.3. Контроль расхода
- •4.3.1. Сущность измерения расхода по методу
- •4.3.2. Осредняющие напорные трубки
- •4.3.3. Расходомеры обтекания. Ротаметры
- •4.3.4. Тахометрические расходомеры
- •4.3.5. Электромагнитный метод измерения расхода жидкости
- •4.3.6. Вихревые расходомеры
- •4.3.7. Ультразвуковые расходомеры
- •4.3.8. Кориолисовые (массовые) расходомеры
- •4.3.9. Расходомер сыпучих веществ DensFlow
- •4.3.10. Измерение расхода на основе тепловых явлений
- •4.3.10.1. Калориметрические расходомеры
- •4.3.10.2. Термоконвективные расходомеры
- •4.3.10.3. Термоанемометры
- •4.4. Контроль уровня
- •4.4.1. Методы измерения уровня жидкости,
- •Акустический уровнемер зонд-3м
- •Датчики-реле уровня жидкости поплавковые дру-1пм
- •4.4.2. Методы измерения уровня сыпучих материалов, применяемые в химической промышленности
- •4.4.3. Беспроводной интеллектуальный преобразователь
- •§5. Контроль параметров качества (состава и свойств веществ)
- •5.1.1. Масс-спектрометры
- •5.1.2. Хроматографы
- •5.1.3. Универсальный многоканальный газоанализатор автоматического непрерывного контроля «ганк-4»
- •5.1.4. Комплексный анализатор дымовых газов sg700
- •5.1.5. Парамагнитный анализатор кислорода в газах mg8
- •5.1.6. Концентратомер ксо-у2
- •5.2. Определение свойств веществ
- •5.2.1. Измерение плотности жидкостей и газов
- •5.2.2. Измерение вязкости веществ
- •5.2.3. Измерение влажности газов и твердых тел
- •5.2.3.1. Контроль относительной влажности газов
- •Измерительные преобразователи температуры и влажности роса-10
- •5.2.3.2. Контроль влажности твердых (сыпучих) тел
- •5.2.5. Измеритель проводимости sc202
- •5.2.6. Измерение мутности
- •5.2.7. Измерение цвета
- •Технические характеристики TeleFlash Compact:
- •§6. Измерение механических и электрических параметров
- •6.1. Измерение весовых величин
- •6.1.1. Использование тензодатчиков
- •Измерение толщины материалов из диэлектриков
- •6.3. Датчик потускнения факела дмс-100м-пф
- •6.4. Измеритель мощности pr 300
- •6.5. Датчики положения
- •6.5.1. Датчики контроля скорости (дкс)
- •Технические характеристики дкс
- •6.5.2. Оптические датчики метки (дом)
- •Технические характеристики (дом)
- •6.5.3. Оптические бесконтактные выключатели (вбо)
- •Технические характеристики вбо типа т
- •Технические характеристики вбо типа r
- •Технические характеристики вбо типа d
- •6.5.4. Емкостные бесконтактные выключатели
- •Ниже приведены примеры использования емкостных бесконтактных выключателей (рис. 6.29-6.32).
- •Технические характеристики емкостного бесконтактного выключателя
- •6.5.5. Ультразвуковой бесконтактный выключатель
- •6.5.6. Пироэлектрические датчики
- •6.5.7. Сигнализатор движения радиоволновый сдр101п
- •6.6. Волоконно-оптические датчики
- •6.6.1. Волоконно-оптические датчики магнитного поля
- •6.6.2. Измерение давления
- •6.6.3. Измерение температуры
- •6.6.4. Измерение уровня
- •Глава 2. Система автоматического регулирования технологических параметров (сар)
- •§1. Структура сак и сар
- •§2. Сар как совокупность типовых
- •2.1. Динамические звенья сар
- •Усилительное звено
- •Апериодическое звено 1-го порядка
- •Интегрирующее звено (астатическое)
- •Колебательное звено
- •Апериодическое звено 2-го порядка
- •Дифференцирующее звено
- •2.1.1. Необходимые сведения из операционного исчисления
- •2.1.2. Передаточные функции типовых динамических звеньев.
- •2.2. Объект регулирования
- •§ 3. Исполнительные устройства
- •3.1. Иcполнительные механизмы
- •Регулирующие органы
- •3.2.1. Регулирующие клапаны
- •Коаксиальный клапан
- •Клеточный клапан
- •Основные технические данные клеточного клапана серии 41005 зао «дс Контролз»
- •Производитель: зао «дс Контролз», г.Великий Новгород
- •3.2.2. Регулирующие заслонки
- •Шиберные задвижки
- •Учебное пособие
Интеллектуальные датчики температуры autrol att2100
Интеллектуальные датчики AUTROL ATT2100 – это еще один вид интеллектуальных датчиков температуры, обладающие широким диапазоном измерений и набором функций, таких как компенсация температуры окружающей среды, постоянная самодиагностика и возможность использования нескольких протоколов связи (рис. 4.61).
Рис. 4.61. Интеллектуальный датчик AUTROL ATT2100
Управляемый микропроцессором ЖКИ дисплей отображает показания прибора в заданных пользователем единицах измерения.
Беспроводные измерительные преобразователи температуры
Беспроводной измерительный преобразователь температуры Rosemount 648 (рис.4.62) предназначен для преобразования сигналов, поступающих от термопреобразователей сопротивления (ТС), термоэлектрических преобразователей омических и милливольтовых устройств постоянного тока в радиосигнал частотой 2,4 ГГц [9]. Rosemount 648 может быть установлен в труднодоступных местах непосредственно в точке измерения или удаленно, обеспечивая надежную передачу данных диагностики и измерений в информационную систему через беспроводной шлюз 1420.
Рис.4.62. Беспроводной измерительный преобразователь
температуры Rosemount 648
Подключение преобразователя к персональному компьютеру осуществляется через Hart-модем или беспроводной шлюз 1420 [9].
Беспроводной шлюз 1420 обеспечивает сбор данных от беспроводных полевых приборов и последующую интеграцию этих данных в систему верхнего уровня, используя стандартные протоколы обмена данными. Беспроводной шлюз 1420 является главным узлом самоорганизующейся беспроводной сети. Он отвечает за управление сетью, безопасность передачи данных и интеграцию их в систему верхнего уровня [9]. Шлюз является точкой входа для передачи данных от беспроводных приборов, которые затем преобразуются в формат, совместимый с различными системами управления. Прием и передача данных беспроводной сети осуществляется по радиосигналу на рабочей частоте 2,4-2,5 ГГц по HART-протоколу. Беспроводной шлюз 1420 поддерживает одновременное подключение до 100 беспроводных измерительных преобразователей. Расширение сети путем добавления дополнительных приборов происходит быстро и просто, позволяя легко планировать расширение и модернизацию систем автоматизации технологических процессов [9]. В отличие большинства беспроводных измерительных приборов, которые требуют наличия прямой видимости между ними и шлюзом для передачи информации, надежные самоорганизующиеся сети предоставляют возможность беспроводным полевым приборам самим взаимодействовать друг с другом. Двумя ключевыми компонентами, обеспечивающими надежность, являются наличие нескольких независимых путей передачи информации для каждого прибора и автоматический выбор маршрута. Эти инновации позволяют достигнуть надежности передачи данных более чем 99%. Надежность передачи данных - это показатель качества передачи данных при наличии сбоев [9]. Возможность автоматического выбора нескольких путей прохождения сигнала позволяет использовать беспроводные сети без проведения дополнительного обследования технологического объекта перед установкой измерительных приборов. Самоорганизующиеся сети изначально спроектированы для надежной работы даже в сложных условиях. Возможность выбора маршрута передачи и автоматическая настройка сети позволяют избежать влияния физических помех, таких как строительные леса и временные конструкции, путем автоматической реорганизации сети в обход препятствий (см рис.4.63) [9].
Рис. 4.63. Организация беспроводного сбора данных контроля температуры