
- •Ғылыми тәсіл ұғымын және жаратылыстану ғылымдарының қалыптасуының жалпылама тәсілдеріне сипаттама беріңіз.
- •2) Ғылыми революция және олардың тарихи түрлеріне сипаттама беріңіз.
- •3) Жаратылыстану ғылымдарының философиялық негіздерін талдау.
- •4) Ғылыми тәсіл ұғымын және жаратылыстану ғылымдарының қалыптасуының негізгі тәсілдеріне сипаттама беріңіз
- •5) Ғылыми революция және олардың тарихи түрлеріне сипаттама беріңіз.
- •6) Ғылым мен техниканың динамикалық мәселесін талдау
- •7) Физиканың мақсаты .Физикалық заңдылықтардың ерекшеліктерін талдау.
- •8) Классикалық механика мен термодинамиканың негізгі концепцияларына сипаттама беріңіз.
- •9) Классикалық электродинамиканың негізгі концепцияларының физикалық мәнін айқындаңыз
- •10) Физикалық өзара-әрекет пен қозғалыстың негізгі түрлеріне сипаттама беріңіз
- •11) Физика заңдарының классификациясын беріңіз.
- •12) Симметрия принциптері мен сақталу заңдарының арасындағы сәйкестікті негіздеңіз (э.Нётер теоремасы).
- •13) Термодинаканың үш заңы мен энтропия ұғымының физикалық мәндерін талдаңыз.
- •14) Электродинамикадағы эфир мәселесіне көзқарас.
- •15) Электромагниттік өрістің дуалистік табиғаты мен жарық кванты ұғымын талдау.
- •20) Эйнштейннің салыстырмалы теориялары.
- •21) Энтропияның статистикалық мағынасы
- •22) Физикалық өзара-әрекеттерді “Ұлы біріктіру” мәселесін талдау.
- •23) Бейстационарлық космологиялық концепциялар
- •24) Философия мен ғылым арасындағы байланыс
- •25) Физикалық өзара әрекеттердің түрлері
- •26) Бүкіләлемдік тартылыс заңы мен әлемнің астрономиалық бейнесіне сипаттама беріңіз.
- •27) Әлемнің біртектілік принціпі мен инерция принціпінің арасындағы байланысты талдау.
- •28) Толқындық қозғалыстың табиғаты мен заңдылықтарының ерекшелілігін көрсетіңіз.
- •29) Энтропия заңы мен даму процессінің қарама-қайшылығын талдау.
- •30) Кеңістік пен уақыттың теорияларына сипаттама беріңіз.
- •31) Детерменизмнің тарихи түрлеріне сипаттама беріңіз.
- •34) Менделеев таблицасының кванттік механикалық мәнін көрсетіңіз.
- •35) Биологияның негізгі концепцияларын конструктивті сыни тұрғыда талдау.
- •37) Синергетиканың негізгі концепциялары.
- •38) Корпускулды-толқындық дуализмнің физикалық мәнін анықтаңыз.
- •41) Генетикалық информацияның биохимикалық мәнін талдау.
- •42) Хаостан реттілікке.
- •43) Материяның құрлымының атомистік концепциясы
- •44) Материяның өрістік формасының заңдылықтарын сипаттаңыз.
- •46) Хх ғ. Вакуум концепциясы
- •47) Космологиядағы антроптық принциптің мәнін талдаңыз.
- •49) Материя мен кеңістіктің геометриялық табиғаты арасындағы байланыс.
- •50) Физикалық өзара әрекеттердің түрлері және олардың кванттық табиғатына сипаттама беріңіз.
- •51) Толқындық функцияның физикалық мағынасын талдау.
38) Корпускулды-толқындық дуализмнің физикалық мәнін анықтаңыз.
Интерференция, дифракция және диперсия тәрiздi құбылыстар жарықтың толқындық қасиетiн дәлелдесе, екiншi жағынан шымқай қара дененiң сәуле шығаруы, фотоэффект тәрiздi құбылыстар жарықтың фотондар деп аталатын бөлшектерден (корпускулалардан) тұратынына нұсқайды. Жарық қасиетiнен осылай әрi толқындық, әрi корпускулалық қаситеттердiң байқалуы корпускулалы толқындық дуализм деп аталады. Корпускулалы толқындық дуализм жарық қасиетiнiң әдеттегi классикалық физикадағыдай көрнектiлiкке ие емес екендiгiн көрсетедi. Физиканың одан әрi даму барысында мұндай екi жақты қасиет тек жарық табиғатына ғана тән емес екенi байқалды. Осымен байланысты француз ғалымы Луи де-Бройль мынадай болжам ұсынды. Корпускулалы-толқындық дуализм тек жарыққа ғана тән емес, ол материяның iргелi қасиетi. Өз кезегiнде керiсiнше элементар бөлшектердiң де толқындық қасиетi болады.
|
6.4 - сурет |
Корпускулалы-толқындық дуализм физикалық нысандардың бiр-бiрiне ұқсамайтын қасиеттерiнiң диалектикалық бiрлiгi болып табылады. Қарастырып отырған нысан бiреу болғандықтан бұл бiр ғана нысанның әртүрлi қасиеттердi сипаттайтын физикалық шамалар бiр-бiрiмен қандай да бiр байланыста болуы тиiс. Шындығында да солай. Жарықты толқын, әрi бөлшек ретiнде сипаттайтын физикалық шамаларды байланыстыратын бұл өрнектердi алғаш рет француз ғалымы де Бройль алған. Осымен байланысты де Бройль қатынастары деп аталатын бұл өрнектер мынадай:
|
(6.7) |
Мұндағы
Дж·с,
ω – циклдiк жиiлiк,
-
толқынның таралу бағытымен бағытталған,
модулi 2π/λ-ға тең толқындық вектор. Бұл
(6.7) қатынастарында физикалық нысандардың
толқындық қасиетiн сипаттайтын ω және
шамаларының
корпускулалық қасиеттi сипаттайтын ε
және
шамаларымен
Планк тұрақтысы арқылы байланысып
тұруының терең физикалық мағанасы бар.
Бұл Планк тұрақтысының физикада iргелi
роль атқаратынының белгiсi.
39) Бейстационарлық модель саптың стационарлық режимінің есебі үшін пайдаланылады. Әлем, - басқаша ғалам. Ғалам – алуан түрлі формада болатын әрі ұдайы өзгеріп отыратын, кеңістік пен уақыт бойынша шеті де, шегі де жоқ бүкіл дүние. Ғаламды (араб сөзінен) зерттеумен тікелей шұғылданатын ғылым – астрономия. Ал барлық ғылыми білімге негізделген ғалам жөніндегі пайымдаулар космологияның мәселесі болып есептеледі. Әлем — бұл нақты өмір суретін, уақыт пен кеңістік бойынша шексіз және өзінің дамуы барысында барлық мүмкін болатын пішін қабылдайтын материялық әлем.Қазіргі құралдармен бақыланып отырған әлемнің бөлігі Метагалактика деп аталады. Бұл біздің Әлем. Оның өлшемі бақыланатын ең алыс денелерге дейінгі қашықтықпен шектеледі. Әлем көптеген метағаламнан тұруы мүмкін.Метагалактиканы сипаттау үшін математик әрі астроном А.Фридманның (1888—1925) ұсынған бейстационарлық моделі пайдаланылады: -Метагалактика эволюциясы гравитациялық күштері-мен анықталады;-Метагалактика кеңістігі изотропты (белгіленіп алынған бағыты жоқ);-Метагалактика кеңістігі біртекті.Фридман тұжырымдамасы бұрын Энштейнмен ұсынған тұжырымдамаға қарсы келді, яғни Энштейн өз кезегінде әлемнің станционарлығы туралы айтып кеткен.Яғни Фридман ұсынған тұжырымдама әлемнің стационарлы және Әлемнің уақытқа қатысты өзгергіш екенін жоққа шығарды.Алғашында баспаға Фридманның тұжырымдамасы 1922 жылы шыққан кезде, Энштейннің наразылығы мен көпшіліктің түсінбейшілігімен қарсы алынды, алайда кейіннен Фридман ұсынған Әлемнің бейстационарлық моделі Энштейннің өзімен мақұлданды.
Біздің Әлемді қандай болашақ күтіп түр? Өткен ғасырдың 20-жылдарынан бастап ғалымдар Әлем эволюциясының модельдерін ұсына бастады. Сондай бір модель бойынша Әлемніңұлғаюы оның қайтадан сығылуымен алмасады да, Әлемнің дамуы тоқтайды. Ал басқа бір болжам бойынша Метағаламның ұлғаюы бірнеше миллиард жылдардан кейін сығылуға алмасады, содан кейін қайта ұлғая бастайды. Үшінші бір гипотеза бойынша Әлемнің ұлғаюы мәңгі жалғаса береді.Осы үш гипотезаны талдай отырып, ғалымдар "біздің Әлемнің және басқа әлемдердің болашағы осы әлемдегі заттардың тығыздығына байланысты" деген үйғарымға келді. Егер біздің Әлем заттарының тығыздығы белгілі бір тығыздықтан, айталық, сындық тығыздықтан (1028 кг/м3) артық болса, онда біз жабық немесе циклді Әлемде өмір сүрудеміз. Ерте ме, кеш пе гравитация кеңеюді тоқтатып, Әлем сығыла бастайды. Галактикалар өздерінің жеке күйлерін сақтай алмайды, демек, жұлдыздар жарылады, сөйтіп, аспан жап-жарық болып жарыққа толады. Ақыр аяғында, барлық материя шарға жиналады, кезінде бәрі де осыдан басталған еді. Егер заттардың тығыздығы сындық тығыздықтан төмен болса, онда Әлем шексіз кеңейе береді. Барлық жұлдыздардың жарығы уақыт өткен сайын шашырайды. Сөйтіп, галактикалар қараңғыға сіңіп жоғалады. Әлемнің жарылыстан кейін пайда болғанын (реликтивтік сәуле шығару, галактикалардың алшақтауы, т.б.) дәлелдеумен қатар Әлемнің тығыздығын және оның массасын анықтау ғылымның казіргі даму сатысында өте қиын және әзірге шешілмеген мәселе. Сондықтан да біз қазір анық қандай Әлемде (жабық па, ашық па немесе циклді ме) өмір сүріп отырғанымызды анық айта алмаймыз.
40) Тіршіліктің генезисі мен эволюциясы мәселесін талдау. Тіршіліктің генезисі. Жерді Күн жүйесінің планетасы және аспан денесі ретінде қарастырсақ, ол диск тәрізді айналып тұрған газды - шаңды бұлттан 4,7 млрд жыл бұрын пайда болған. Қазіргі кезде осы бұлттың температурасына деген көзқарас бойынша зерттеушілердің бірнеше тобын көрсетуге болады. Олардың бір тобының ойы бойынша (В. Гольдшмидт, Г. Джеффрис, В.Г.Фесенков және т.б.) протопланеталық бұлт ыстық болған десе, ал зерттеушілердің екінші тобы (В.И.Вернадский, О.Ю.Шмидт, Р.Руби, А.П.Виноградов және т.б.) бұл бұлт суық болған деп есептейді. Планеталардың газ – шаңды бұлттан пайда болуы Жер Күнді 30 шақ/сек жылдамдықпен айналады. Протопланеталық газ-шаңды бұлттарда да заттардың осы айналу жылдамдығы сақталған. Центрге тартқыш күштердің әсерінен, бұлттағы қатты бөлшектер бір - бірімен соқтығысып, бір – біріне жабысып, қар түйіршіктері секілді жинақталып ірі ірі денелер түзген. Планетамыздың массасының “жинақталып” түзілу үрдісі басында аса үлкен жылдамдықпен жүреді. Сағат сайын Жерге орта есеппен алғанда 10-15 млрд тонна метеорит заттары түсіп отырды. Жер орбитасынан шаңның көтерілуі жер массасының өсуін бәсеңдетті. Көрсетілген үрдіс әлі күнге дейін өте баяу болса да орын алуда. Жер бетінде тіршіліктің пайда болуы үшін ғарыштық және ғаламшарлық кейбір алғышарттар қажет. Ол үшін ғаламшардың өзіне тән мөлшері болу шарт. Ғаламшардың мөлшері тым үлкен болса, табиғи радиоактивті заттардың атомдық ыдырауынан бөлінген энергияның әсерінен ғаламшар өте кызып кетуі мүмкін. Ғаламшардың тым қызып кетуі қоршаған ортаның радиоактивті заттармен ластануына жағдай жасайды. Ал ғаламшардың мөлшері тым кіші болса, ол өз айналасындағы атмосфераны ұстап тұра алмайды. Ғаламшарлар жұлдыздарды орбита бойынша айнала қозғалуы аркылы тұрақты түрде және біркелкі мөлшерде өзіне қажетті энергия алып тұруы тиіс. Ғаламшарға энергия ағысы бір калыпты түспесе тіршіліктің пайда болуы мен дамуы мүмкін емес. Өйткені тірі организмдердің тіршілігі белгілі бір температуралық жағдайда ғана жүріп отырады. Қорыта айтқанда, Жер ғаламшарында тіршіліктің пайда болуының алғышарттарына — ғаламшардың қажетті мөлшері, энергия және белгілі температуралық жағдайлар жатады. бұл айтылған алғышарттар тек Жер ғаламшарында ғана болғандығы ғылыми дәлелденген. Тіршіліктің пайда болуы, адам баласын өте ерте кездерден бастап- ақ толғандырып келе жатқан күрделі мәселенің бірі. Ол жайында көптеген болжамдармен көзқарастар бар.
Тіршіліктің пайда болуы жайлы теорияны Пфлюгер, Дж. Холдейн және Р. Бейтнер ұсынды. Бірақ толық түрде бұл теория биохимик, академик А.И.Опариннің 1924 жылы жазылған “Тіршіліктің пайда болуы” деген еңбегінде қарастырылды. Бұл теория бойынша тіршіліктің пайда болуы – Жердегі ұзақ эволюцияның - алдымен атмогидросферадағы химиялық, одан кейін биологиялық эволюциялардың нәтижесі. Бұл концепция қазіргі кезде ғылыми ортада ең танымал. Сондай - ақ көрсетілген тұжырым ғалымдардың басым көпшілігімен мақұлданған.
Жер бетіндегі тіршілік жоғары саналы жануарлар, қарапайым жалғыз клеткалы организмдерден бастап, түрлі вирустар болып табылатын жалғыз белокты молекулалардан құралған нысандардан құралған. Вирустар инертті кристалдық нысанда немесе қозғалмалы жағдайда өмір сүреді. Белоктық молекуланың өзі болса, оларға қарағанда қарапайым бөліктерден – бір-бірімен түрлі химиялық байланыстар арқылы байланысып, амин қышқылдарын құрайтын көміртегінің, сутегінің, азоттың, оттегінің, қосылыстарынан тұрады. 1953 жылы С.Л.Миллер мен Г.К. Юри деген америкалық ғалымдар Опариннің теориясы негізінде жасанды атмосферамен бірінші болып тәжірибе жасады. Олар Жердің алғашқы атмогидросферасының құрамында болған сутегі (H2), метан (CH4), аммиак (NH3) пен су буының (Н2О) қоспасынан амин қышқылын алды. Газдардың бұл құрамы вулкан газдарының құрамдарына толық сәйкес келетіндігі белгілі. Газдардың осы қоспасына күшті электр тоғы беріліп, содан соң конденсациялады. Алынған сұйықтың құрамынан амин қышқылдары, түрлі көмірсутегілер мен тірі материяға тән компоненттер табылды. Басты факторлардың бірі тотығу - қалпына келу үрдістері белсенді жүруіне мүмкіндік беретін бос оттег
Жер эволюциясындағы негізгі үрдісі заттардың әртүрлі салмақтарына байланысты гравитациялық дифференциациялануының нәтижесіндегі салмағы ауыр заттардың төмен, Жердің орталығына түсіп, ал салмақтары жеңілдеулері жоғары көтерілуі. Осының нәтижесінде Жер қабаттарға – неғұрлым терең қабаттардың массасы ауыр заттардан құралатындай бөлінді.