
- •Ғылыми тәсіл ұғымын және жаратылыстану ғылымдарының қалыптасуының жалпылама тәсілдеріне сипаттама беріңіз.
- •2) Ғылыми революция және олардың тарихи түрлеріне сипаттама беріңіз.
- •3) Жаратылыстану ғылымдарының философиялық негіздерін талдау.
- •4) Ғылыми тәсіл ұғымын және жаратылыстану ғылымдарының қалыптасуының негізгі тәсілдеріне сипаттама беріңіз
- •5) Ғылыми революция және олардың тарихи түрлеріне сипаттама беріңіз.
- •6) Ғылым мен техниканың динамикалық мәселесін талдау
- •7) Физиканың мақсаты .Физикалық заңдылықтардың ерекшеліктерін талдау.
- •8) Классикалық механика мен термодинамиканың негізгі концепцияларына сипаттама беріңіз.
- •9) Классикалық электродинамиканың негізгі концепцияларының физикалық мәнін айқындаңыз
- •10) Физикалық өзара-әрекет пен қозғалыстың негізгі түрлеріне сипаттама беріңіз
- •11) Физика заңдарының классификациясын беріңіз.
- •12) Симметрия принциптері мен сақталу заңдарының арасындағы сәйкестікті негіздеңіз (э.Нётер теоремасы).
- •13) Термодинаканың үш заңы мен энтропия ұғымының физикалық мәндерін талдаңыз.
- •14) Электродинамикадағы эфир мәселесіне көзқарас.
- •15) Электромагниттік өрістің дуалистік табиғаты мен жарық кванты ұғымын талдау.
- •20) Эйнштейннің салыстырмалы теориялары.
- •21) Энтропияның статистикалық мағынасы
- •22) Физикалық өзара-әрекеттерді “Ұлы біріктіру” мәселесін талдау.
- •23) Бейстационарлық космологиялық концепциялар
- •24) Философия мен ғылым арасындағы байланыс
- •25) Физикалық өзара әрекеттердің түрлері
- •26) Бүкіләлемдік тартылыс заңы мен әлемнің астрономиалық бейнесіне сипаттама беріңіз.
- •27) Әлемнің біртектілік принціпі мен инерция принціпінің арасындағы байланысты талдау.
- •28) Толқындық қозғалыстың табиғаты мен заңдылықтарының ерекшелілігін көрсетіңіз.
- •29) Энтропия заңы мен даму процессінің қарама-қайшылығын талдау.
- •30) Кеңістік пен уақыттың теорияларына сипаттама беріңіз.
- •31) Детерменизмнің тарихи түрлеріне сипаттама беріңіз.
- •34) Менделеев таблицасының кванттік механикалық мәнін көрсетіңіз.
- •35) Биологияның негізгі концепцияларын конструктивті сыни тұрғыда талдау.
- •37) Синергетиканың негізгі концепциялары.
- •38) Корпускулды-толқындық дуализмнің физикалық мәнін анықтаңыз.
- •41) Генетикалық информацияның биохимикалық мәнін талдау.
- •42) Хаостан реттілікке.
- •43) Материяның құрлымының атомистік концепциясы
- •44) Материяның өрістік формасының заңдылықтарын сипаттаңыз.
- •46) Хх ғ. Вакуум концепциясы
- •47) Космологиядағы антроптық принциптің мәнін талдаңыз.
- •49) Материя мен кеңістіктің геометриялық табиғаты арасындағы байланыс.
- •50) Физикалық өзара әрекеттердің түрлері және олардың кванттық табиғатына сипаттама беріңіз.
- •51) Толқындық функцияның физикалық мағынасын талдау.
20) Эйнштейннің салыстырмалы теориялары.
Эйнштейннің салыстырмалы теорияларының екі түрі белгілі: жалпы және арнайы.
Жалпы салыстырмалылық теориясында кеңістік- уақыт қатынастарының материалдық процестерге қатысының жаңа жақтары ашылды. Жалпы салыстырмалылық теориясы инерциялық және гра-витациялық массалардың эквиваленттік принципінен шығады. Атап айтқанда, массалардың эквиваленттік принципінің негізінде салыстырмалылық принципі қалыптасты, ол жалпы салыстырмалылық теориясында табиғат заңдарының инварианттылығын бекітті.
Салыстырмалылық теориясы кеңістіктің ауырлық күшінің әсерінен майысатындығын және уақыт барысының күшті гравитациялық өрістерде баяулайтыкын анықтады.
Жалпы салыстырмалылық теориясының фантастикалық болжамдарының бірі - өте күшті тартылыс өрісінде уақыттың толық тоқтайтындығы туралы. Тартылыс күші артқан сайын уақыттың баяулауы да күшейе түседі. Уақыттың баяулауы жарықтың гравитациялық қызыл орын ауыстыруы арқылы байқалады да, толқындар үзындығы артқан сайын оның жиілігі азая береді. Белгілі бір жағдайда толқын үзындығы шексіздікке, ал жиілігі нөлге ұмтылады.
Салыстырмалылық теориясы уақыт пен кеңістіктің бірлігін көрсетті, кеңістік-уақыттық төртөлшемдік контимуум туралы түсінік қалыптасты.
Салыстырмалылық теориясы масса мен энергияны e=mc2 қатынасымен байланыстырды, мұнда С - жарық жылдамдығы.
Салыстырмалылық теориясында екі заң - зат массасының және энергиясының сақталуы заңдары бірігіп, энергия және зат массасының сақталуы деген бір заңға айналды.
Ал арнайы салыстырмалылық теориясы бұл- вакуумда жарық жылдамдығынан аз, соның ішінде жарық жылдамдығына жақын жағдайдағы қозғалысты, механика заңдарын, кеңістіктік-уақыт қатынасындағы әртүрлі қозғалыс жылдамдықтарын сипаттайтын теория. Арнайы салыстырмалық теория шеңберінде Ньютонның классикалық механика теориясы төмен жылдамдықтардың жақындасуы болып табылады. Гравитациялық өрістегі арнайы теорияның жалпылануы жалпы салыстырмалық теориясы деп аталады. Арнайы салыстырмалық теориямен сипатталатын физикалық процестердің классикалық механика болжамдарынан ауытқуы релятивистік эффекті деген атауға ие, ал мұндай эффектілер жүзеге асатын жылдамдықтар релятивтік жылдамдық деп аталады. Арнайы салыстырмалық теориясының классикалық механикадан негізгі айырмашылығы кеңістіктік және уақыт сипаттамаларының жылдамдыққа тәуелдәлігі болып табылады.
21) Энтропияның статистикалық мағынасы
Энтропия түсінігін алғаш енгізген Клаузиус. Оның физикалық мәнін қарастыру үшін изотермиялық процесс кезіндегі жылу мөлшерінің Q жылу беруші дененің температурасына Т қатынасын қарастырады, бұл қатынасты келтірілген жылу мөлшері деп атайды. Кез-келген қайтымды процесс кезінде денеге берілетін келтірілген жылу мөлшері нольге тең. Термодинамикада қайтымды процесс үшін: ΔS = 0, ал қайтымсыз процесс үшін өседі: ΔS > 0. Бұл өрнектерді біріктіріп, Клаузиус теңсіздігін алуға болады: ΔS ≥ 0.
Статистикалық физикада энтропия үғымының негізіне Больцман өрнегі алынған: S = klnWт. Бұл өрнек күйі l - сыртқы параметрлер мен Е - энергияның мəндерінің жиыны арқылы анықталатын тұйықталған жүйенің энтропиясын сипаттайды. S = klnΩ(E,λ )
Жүйенің энергиясы нақты бір мəнге ие болмайтындықтан энтропия канондық үлестірудің орта мəні негізінде есептеледі ( S = klnW E, l ).
Сонда энтропияны мынадай өрнекпен есептеуге болады: S = klnW(U, l). U - термодинамикалық ішкі энергия, U = E . (16)-шы өрнек энтропияның жүйенің термодинамикалык күйінің функциясы екендігін көрсетеді.
Статистикалық анықтама бойынша энтропия тепе-теңдік күйде максимум мəнге ие болады, яғни кез келген тепе-теңдікте емес күйлердің энтропиясы тепе-теңдік жағдайдан кем болады. Бірақ тепе-теңдікте емес түйықталған жүйе жылулық қозғалыстардың салдарынан тепе-теңдік күйге келетіндіктен тепе-теңдікте емес жүйелердің энтропиясы ұлғаяды. Бұл тұжырым энтропияның өсу заңы деп аталады. Энтропияның жүйенің күйін сипаттайтын параметр ретіндегі мағынасының өзі ол жүйенің «тепе-теңдікте еместігінің» дəрежесін сипаттайтындығында. Статистикалық теорияда энтропияның өсу заңының статистикалык мағынасы көрнекі түрде түсіндіріледі: ішкі өзгерістердің нəтижесінде жүйе ықтималдығы үлкен күйлерге ұмтылады, яғни саны көп микрокүйлер ғана нактыланады. Ал тепе-теңдік күйден жүйе өздігінен шықпайды, себебі бұл жүйеге термодинамикалык ықтималдықтың үлкен мəні сəйкес келеді. Түйықталған жүйедегі үрдістердің жүру бағыты мынадай қатынаспен сипатталады: dS≥0
Тұйықталған жүйенің тепе-теңдік күйге өтуін қарастырайық. Тепе-тендік қалып жүйенің негізгі қасиеттерінің теңескендігін көрсетеді. Барлық өлшемдердің орта мəндерінің орнығуы, біртекті мəнге келуі үрдістің сыртқы əсерсіз, өздігінен жүру себебінен болады. Бұл жағдайда энтропия артатын болғандықтан жүйе тепе-теңдік қалыпқа ұмтылғанда жүретін үрдістер қайтымсыз болады. Қайтымсыз үрдісті еш уакытта бастапқы қалпына кері əкелуге болмайды деп деп түсіну қате. Егер жүйе А күйінен В күйге өтсе, сыртқы əсерлерді пайдаланып оны В күйінен кері А күйіне қайтаруға болады, бұл жағдайда жүйе АВ үрдісіне қарсы бағытта өтеді. Қайтымсыздық деп тіке
жəне кері үрдістерде қоршаған денелерде кейбір кейбір өзгерістердің қалуын айтады.
Нақты үрдістер қайтымсыз болады. Бірақ моделдік жобалауда, кейбір механикалық, электромагниттік құбылыстарды, үйкелісті, ортаның тұтқырлығын, тоқ жүргендегі жылудың бөлінуін т.б. ескермесе, қайтымды деп қарастыра аламыз. Осы сияқты термодинамикадағы тепе-теңдіктегі үрдістер де, тұйықталған жүйеде энтропия өспейтін болғандыктан (dS = 0), қайтымды үрдістерге жатады. Шындығында да, белгілі бір дененің күйі басқа объектімен əсерлескенде, əрбір уақыт мезетінде, сыртқы параметрлер жəне температура арқылы анықталады.