
- •39. Әлемнің Бейстационарлық моделіне сипаттама
- •27. Әлемнің біртектілік принціпі мен инерция принціпінің арасындағы байланысты талдау.
- •23. Бейстационарлық космологиялық концепциялар.
- •35. Биологияның негізгі концепцияларын конструктивті сыни тұрғыда талдау.
- •26. Бүкіләлемдік тартылыс заңы мен әлемнің астрономиалық бейнесіне сипаттама беріңіз.
- •41. Генетикалық информациясының биохимиялық мәнін талдау.
- •6 Ғылым мен техниканың динамикалық мәселесін талдау
- •2 Ғылыми революция және олардың тарихи түрлеріне сипаттама беріңіз.
- •1 Ғылыми тәсіл ұғымын және жаратылыстану ғылымдарының қалыптасуының жалпылама тәсілдеріне сипаттама беріңіз
- •Қазіргі жаратылыстану принциптері
- •Теориялық әдістер(байқау, эксперимент, сипаттау, өлшеу)
- •31. Детерменизмнің тарихи түрлеріне сипаттама беріңіз
- •5 Дүниенің ғылыми суреті мен Ғылыми революция және олардың тарихи түрлеріне сипаттама беріңіз.
- •Жаратылыстану обьектілеріне қолданылатын бүкілжалпылық әдістер
- •4 Жаратылыстану ғылымдарының қалыптасуының негізгі тәсілдерін талдау
- •3 . Жаратылыстану ғылымдарының философиялық негіздерін талдау.
- •30. Кеңістік пен уақыттың теорияларына сипаттама беріңіз.
- •36. Кибернетиканың негізгі концепцияларын талдау
- •8 Классикалық механика мен термодинамиканың негізгі концепцияларына сипаттама беріңіз.
- •9 Классикалық электродинамиканың негізгі концепцияларының физикалық мәнін айқындаңыз
- •38. Корпускулды-толқындық дуализмнің физикалық мәнін анықтаңыз.
- •47. Космологиядағы антроптық принтциптің мәні
- •48. Космологиядағы құрдым мәселесін талдау
- •43. Материяның құрлымының атомистік концепциясы
- •44. Материяның өрістік формасының заңдылықтарын сипаттаңыз.
- •34. Менделеев таблицасының кванттік механикалық мәнін көрсетіңіз.
- •12 Симметрия принциптері мен сақталу заңдарының арасындағы сәйкестікті негіздеңіз (э.Нётер теоремасы).
- •37. Синергетиканың негізгі ұғымдарының мәні
- •13. Термодинаканың үш заңы мен энтропия ұғымының физикалық мәндерін талдаңыз.
- •Энтропия туралы ұғым
- •28. Толқындық қозғалыстың табиғаты мен заңдылықтарының ерекшелілігін көрсетіңіз.
- •51. Толқындық функцияның физикалық мағынасы
- •Шредингер теңдеуі
- •40. Тіршіліктін генезисі мен эволюциясы мәселесін мәселесін талдау
- •11. Физика заңдарының классификациясын беріңіЗ
- •24. Философия мен ғылымарасындағы байланыс
- •7 Физиканың мақсаты .Физикалық заңдылықтардың ерекшеліктерін талдау.
- •25. Физикалық өзара әрекеттердің түрлері
- •50. Физикалық өзара-әрекеттердің түрлері және олардың кванттық табиғаты
- •Гравитациялық өзара әрекеттесу Бүл барлық әрекеттесулердің ішіндегі ең әлсізі. Өзара әсерлеуші денелердің массалары неғурлым үлкен болса, соғұрлым гравитациялық әсер жоғары болады.
- •22. Физикалық өзара-әрекеттерді “Ұлы біріктіру” мәселесін талдау.
- •42. Хаос пен реттіліктің арасындағы байланыс
- •14. Электродинамикадағы эфир мәселесіне көзқарас.
- •15. Электромагниттік өрістің дуалистік табиғаты мен жарық кванты ұғымын талдау.
- •21. Энтропияның статистикалық мағынасы
- •29. Энтропия заңы мен даму процессінің қарама-қайшылығын талдау.
- •32. Эволюцияның модельдерін конструктивті сыни тұрғыда талдау.
- •46. Хх ғасырдағы вакуум концепцияларын талдаңыз
14. Электродинамикадағы эфир мәселесіне көзқарас.
Электродинамика — 2011 жылы Алматы қаласы «Қазақ университеті» баспасында басылып шыққан кітап. Кітап авторы/құрастырушысы — Н. Бейсен. Беттер саны — 80.
II. ЭЛЕКТРОДИНАМИКАЛЫҚ БӨЛИМ
Бос орталық ушын Максвелл-Герц теңлемелерин түрлендириў.
Магнит майданында қозғалғанда пайда болатуғын электр қозғаўшы
күшлердиң тəбияты
Мейли Максвелл-Герц теңлемелери K тынышлықта турған системадағы бос орталық ушын дурыс болсын. Бундай жағдайда мынаған ийе боламыз: Бул аңлатпалардағы (X,Y,Z) лер электр майданының кернеўлилиги векторы, (L, М, N) 12арқалы магнит майданының кернеўлилик векторы белгиленген. Егер биз бул теңлемелерге 3-параграфта алынған түрлендириўди қоллансақ ҳəм электромагнит процесслерин сол параграфтағы v тезлиги менен қозғалыўшы қоордината системасына тийисли деп қарасақ, мына теңлемелерди аламыз:
Салыстырмалық принципи K системасында дурыс болған бослық ушын жазылған Максвелл-Герц теңлемелериниң k системасында да дурыс болыўын талап етеди. Бул өз гезегинде қозғалыўшы k системасында электр зарядларына пондермоторлық тəсири ямаса соған сəйкес магнит массалары арқалы анықланған электр ҳəм магнит майданларының кернеўлиликлери векторлары ушын төмендегидей теңлемелердиң дурыс болатуғынлығын билдиреди: k системасы ушын табылған теңлемлердиң еки системасы да дəл бир нəрсени аңлатыўы керек, себеби теңлемелердиң еки системасы да K системасы ушын жазылған Максвелл-Герц теңлемелерине эквивалент. Еки системаның теңлемелери векторларды сəўлелендиретуғын символларды есапқа алмағанда бир бирине сəйкес келетуғын болғанлықтан теңлемелердиң еки системасындағы сəйкес орынларда турған функциялар барлық функциялар ушын ортақ болған жəне ξ, η, ζ, τ шамаларынан ғəрезсиз ψ(v) 13көбейтиўшисине шекемги дəлликте бир бири менен тең болыўы керек. Солай етип X' = y(v )X, L' = y( v )L, Егер бул теңлемелер системасын, бириншиден, тиккелей шешиў арқалы, екиншиден, v тезлиги менен характерленетуғын кери түрлендириў жəрдеминде (k дан K ға) айландырсақ (обратить, Б.А.) ҳəм алынған еки теңлемелер системасының бир бири менен бирдей екенлигин дыққатқа қабыл етсек, онда y(v )y( - v ) =1
екенлигин аламыз.
15. Электромагниттік өрістің дуалистік табиғаты мен жарық кванты ұғымын талдау.
Электромагниттік өрістің қасиеттерін зерттеу үстінде Максвелл мынадай сауалға жауап іздеді: егер айнымалы магнит өрісі электр өрісін тудыратын болса, табиғатта кері процесс болар ма екен? Өз кезегінде айнымалы электр өрісі магнит өрісін тудырмас па екен? Табиғаттың біртұтастығына, табиғат заңдарының ішкі құрылымының үйлесімділігіне кәміл сенгендіктен туған бұл ой Максвелл гипотезасының негізгі арқауы болып табылады. Электр өрісінің өзгерісі кезінде магнит өрісінің пайда болуы. Максвелл мұндай протцесс табиғатта шынында да өтеді деп есептеді. Электр өрісі бойынша өзгеретін барлық жағдайда магнит өрісі пайда болады. Бұл электр өрісінің кернеулік сызықтары айнымалы магнит өрісінің индукция сызықтарын қамтып алатыны секілді, өрістің магнит индукциясының сызықтары электр өрісінің кернеулік сызықтарын қамтып алады. Бірақ мұнда электр өрісінің кернеулігі артқан кезде пайда болатын магнит өрісінің В индукция векторы Е векторының бағытымен оң бұранда түзеді. Электр өрісінің кернеулігі кеміген кезде магнит индукциясының В векторы бағыты Е векторы бағытымен сол бұранда түзіледі. Максвеллдің гипотезасы бойынша магнит өрісін, мысалы, конденсаторды заряттағанда кілтті қосқаннан кейін тек өткізгіштегі тоқ ғана емес, сонымен қатар конденсатордың астарлары арасындағы кеңістікте болатын айнымалы электр өрісі де тудырады. Әрі айнымалы электр өрісі, астарлардың арасында дәлме-дәл өткізгіштегідей электр тоғы болатын кездегідей магнит өрісін тудырады. Максвеллдің гипотезасы тәжірбиеде электромагниттік толқындардың табылуы арқылы дәлелденеді. Электромагниттік толқындар тек айнымалы магнит өрісі айнымалы магнит өрісінің тудыруының арқасында ғана пайда болады. Электромагниттік өріс. Өзгермелі электр және магнит өрістерінің арасындағы байланыс ашылғаннан кейін бұл өрістердің жеке күйінде бір біріне тәуелсіз өмір сүре алмайтыны айқындалды. Кеңістікте айнымалы магнит өрісі жеке өзі емес электр өрісімен қатар пайда болады. Және керісінше айнымалы электр өрісі магнит өрісінсіз пайда бола алмайды.Тағы бір маңызды мәселе, электр өрісі магнит өрісінсіз немесе магнит өрісі электр өрісінсіз тек белгілі санақ жүйесінде қатысты ғана бола алады. Мәселен, тыныштықтағы заряд тек электр өрісін ғана тудырады. Бірақ заряд тек белгілі санақ жүйесіне қатысты ғана тыныштықта болатыны белгілі. Басқа санақ жүйелеріне қатысты ол қозғалыста бола алады, демек, магнит өрісін тудыра алады.
Дәл осындай магнитпен байланыс қан санақ жүйесіне тек магнит өрісін ғана байқаған болар едік. Бірақ магнитке қатысты қозғалыстағы бақылаушы электр өрісін де аңғарады. Себебі, магнитпен салыстырғанда қозғалыстағы санақ жүйесіндегі магнит өрісі бақылаушы оған жақындаған сайын немесе одан алыстаған сайын уақыт бойынша өзгертеді. Уақыт бойынша айнымалы магит өрісі құйынды электр өрісін тудырады. Демек, егер осы өзгерістердің қай санақ жүйесіне қатысты қарастырылып отырғаны көрсетілмесе, кеңістікте берілген нүктесінде тек қана электр немесе тек қана магнит өрісі бар деген ұйымдарда ешқандай мағына жоқ. Магнитке қарасты тыныштық күйде тұрған санақ жүйесінде электр өрісінің болмауы жалпы электр өрісі жоқ дегенді білдірмейді. Магнитке қатысты қозғалыста болатын кез келген санақ жүйесінде бұл өрісті байқауға болады. Электр және магнит өрістері біртұтас электромагниттік өрістердің білінуі болып табылады. Электромагниттік өріс зарядталған бөлшектердің арасындағы әрекеттесулерді іске асыратын материяның ерекше түрі. Ол шын бар, яғни бізге тәуелсіз, біздің ол жайлы білімімізге тәуелсіз өмір сүреді. Бірақ элоктромагниттік процестерді қай санақ жүйесінде қарастырып отырғанымызға байланысты біртұтас электромагниттік өрістің осы не басқа қыры көрінеді. Барлық инерциялық санақ жүйелері өзара тең құқықты. Сондықтан электромагниттік өрістің байқалатын көріністердің бірде-біреуінің артықшылығы болмайды.Максвеллдің гипотезасы бойынша айнымалы электр өрісі магнит өрісін тудырады. Электромагниттік өріс біртұтас санақ жүйесіне тәуелді түрде өрістің бірде-бір, бірде екінші қасиеттері білінеді.Электр зарядтары айналмалы қозғалғанда, яғни кез - келген айнымалы токта электр өрісі де, магнит өрісі де уақыт ағымына қарай өзгеріп отырады. Сонымен қатар, бұл өрістер, Максвеллдің 1865 жылғы теориялық пайымдауынша, өздерін біртұтас электормагниттік өріc түрінде көрсетеді. Максвелл сегіз жыл бойы тынбай жүргізген физика - математикалық таңдауларын 1873 жылы қорытындылады. Ол біртұтас электромагниттік өрістің теориясын жасады және оның бос кеңістікте де толқын түрінде тарай алатындығын дәлелдеді. Электр зарядтары айнымалы қозғалыс жасағанда, олардың туғызатын айнымалы электромагниттік өрісі кеңістіктің бір нүктесінен екінші нүктесіне тарайды. Айнымалы электромагниттік өрістің кеңістікте таралуын электромагиттік толқын деп атайды.3 Фотоэффект теориясы. Жарық кванттары
Фотоэффект заңдарының теориялық түсiнiгiн 1905 жылы А.Эйнштейн бердi. Ол өз зерттеулерiнде М.Планктың кванттар жөнiндегi ұғымын одан әрi дамыта отырып, жарық тек кванттар түрiнде шығарылып ғана қоймайды, сонымен қатар кванттар түрiнде жұтылады да деп есептедi. Бұл жарық кванттарын ол фотондар деп атады. Эйнштейннiң бұл идеялары осы кезге дейiн үстемдiк етiп келген жарықтың толқындық теориясынан өзгеше, соны көзқарас едi. Бұл жерде жарықтың таралуы үздiксiз толқындық үрдiс ретiнде емес, ерекше жарық бөлшектерi – фотондардың с - ға тең жылдамдықпен қозғалатын ағыны ретiнде қарастырылады. Бұл тұрғыдан қарағанда, мәселен монохроматты жарыққа энергияларының мәндерi бiрдей, әрi hν-ге тең болатын фотондар сәйкес қойылады. Ал жарықтың затқа жұтылуы сәйкес фотондар осы затқа түскен кезде өз энергиясын түгелiмен заттың атомдары мен молекулаларына беруiмен түсiндiрiледi. Жарықтың табиғатына деген осы кванттық көзқарас фотоэффект құбылысының тәжiрибеден байқалатын барлық заңдылықтарын түсiндiруге мүмкiндiк бердi. Шындығында, мәселен, электрон металлдан ұшып шығуы үшiн металл-вакуум шекарасындағы потенциалдық тосқауылдан өтуi, яғни қандай да бiр Aшығ-ға тең шығу жұмысын iстеуi қажет. Бұған қажет энергияны электрон өзi жұтқан фотоннан алады. Фотон металл атомына жұтылған кезде өзiнiң εν=hν -ға тең энергиясын толығымен электронға бередi. Онда мұндай фотоэлектрондар үшiн энергияның сақталу заңын мына түрде жазуға болады
|
(6.2) |
Мұндағы mv2/2 – металлдардан ұшып шыққан фотоэлектронның кинетикалық энергиясы, ал Aшығ жоғарыдағы шығу жұмысы. Бұл өрнек сыртқы фотоэффект үшiн жазылғанЭйнштейн теңдеуi деп аталады. Бұл теңдеуден егер hν>Ашығ болса, онда электрон өз энергиясының бiразын шығу жұмысына жұмсап, металлдан ұшып шыға алатыны көрiнiп тұр. Ал егер электронның энергиясы шығу жұмысынан аз болса, онда ол металлдан тысқары шыға алмайды. Фотоэффект мүмкiн бола бастайтын ең аз жиiлiктi νmin деп белгiлей отырып, оны фотоэффекттiң қызыл шекарасы деп атайды. Фотоэффекттiң қызыл шекарасының мәнi электрон ұшып шығатын беттiң күйiмен және металлдың химиялық құрамымен анықталады.
Эйнштейн теңдеуi сыртқы фотоэффекттiң тәжiрибеден байқалатын барлық заңдарын теориялық тұрғыдан түсiндiруге мүмкiндiк бередi. Шындығында, екiншi заңмен анықталған фотоэффекттiң қызыл шекарасының түсiнiгiн жоғарыда бердiк, ал ендi (6.3) өрнегiнен электрондардың максимальдi кинетикалық энергиясы, яғни максимальдi жылдамдығының жиiлiктен тәуелдi екенi көрiнiп тұр. Бұл фотоэффекттiң бiрiншi заңы.
Ақырында, уақыт бiрлiгiнде ұшып шығатын электрондардың саны бетке түсiп жатқан фотондардың санына пропорционал болуы керек. Ал фотондардың саны жарықтың қарқындылығын анықтайды. Сонымен, фотоэффекттiң үшiншi заңы да өз түсiнiгiн алды.