Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хрестоматия по матем.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.58 Mб
Скачать

6. Плюрализм и консенсус

Прекрасной иллюстрацией тех трудностей, которые возникают перед желающим дать четкую классификацию направлений и кон­цепций современной философии математики, является понимание основного термина — «реализм». С. Шапиро дает такую сводку: «Реалист говорит, что "числа существуют". Антиреалист говорит: "числа не существуют". Тут страсти нешуточные. Оппонентов час­то называют "теологами", "скептиками" — весьма оскорбительные слова на современном жаргоне. Я хочу понимать эти направления как рабочие программы. Реализм может иметь много смыслов. Один — что математические объекты существуют независимо от математиков. Это реализм в онтологии. Другой — что утверждения различных областей математики имеют объективные бивалентные истинностные значения независимо от конвенций, языка и правил математиков, и что основная часть утверждений компетентных ма­тематиков истинна. Это — реализм в истинностных значениях. Нет общего согласия относительно соотношения этих двух видов реа­лизма. Мэдди и Гедель — реалисты в обоих смыслах. Даммит — антиреалист в обоих смыслах. Хеллман и Чихара — антиреалисты в онтологии и реалисты в истинностных значениях. Единственный человек — реалист в онтологии и антиреалист в истинностных зна­чениях — это Теннант» (43).

Перечисленные выше старые и новые направления в филосо­фии математики не исчерпывают всех подходов, поскольку все они принадлежат некоторому «канону», который превосходно ощуща­ется аналитическими философами. Однако есть и радикально дру­гие подходы к философии математики, и среди них следует выде­лить философа Ф. Китчера и математика Р. Херша.

Для Китчера математические утверждения суть совокупность операций, выполняемых идеальным субъектом (44). Он полагает мате­матику цепью непрерывных концептуальных конструкций и в этой связи развивает эволюционную модель математического познания. Таким образом, ключевой дисциплиной при подобного рода иссле­дованиях предстает история математики, из которой следует извлечь некоторые рациональные принципы, управляющие концептуальны­ми изменениями по ходу развития математики. Ясно, что философия Т. Куна занимает в позиции Ф. Китчера самое значительное место. Кроме того, Китчер прибегает в объяснении математического познания к причинной теории указания Крипке — Патнэма, согласно которой значение термина прослеживается через цепь изменений к некото­рому исходному акту употребления термина. Рано или поздно эта цепь упирается в перцептуальное познание наших предшественни­ков-предков. В этом ключе, утверждая важность психологии, Кит­чер отказывается от эпистемологической ориентации в исследова­нии природы математических истин. Если обычная позиция в фило­софии математики состоит в том, чтобы обосновать знание этих ис­тин, то Китчер полагает, что большая часть людей уже знает значи­тельную часть математических истин, и задача философского исследо­вания состоит в том, чтобы понять, как мы получаем это знание.

Несмотря на новые программы, все эти направления находятся в русле, если можно так выразиться, классической философии ма­тематики. Между тем возможен более радикальный взгляд на фило­софию математики, который, как считает Р. Херш, больше соответ­ствует духу того, что делают работающие математики. Он полагает, что в повороте философии математики к практике некоторые фило­софы высказали новые взгляды, суть которых состоит в следующем.

• Математика является человеческим предприятием и, стало быть, частью человеческой культуры. Значит, математика не есть описание абстрактных концепций Фреге и вневременной объектив­ной реальности.

• Математическое знание погрешимо. Подобно науке, матема­тика прогрессирует через ошибки и их исправление (Лакатос).

• Существуют различные версии доказательства и строгости в зависимости от времени, места и множества других вещей. Исполь­зование компьютеров в доказательстве есть нетрадиционная версия строгости.

• Эмпирические свидетельства, числовое экспериментирование, вероятностные доказательства помогают нам решать, во что верить в математике. Аристотелевская логика является не самым лучшим способом решения этих проблем.

• Математические объекты суть специальный вид социально-культурно-исторических объектов. Мы можем выделить математи­ку из литературы или религии. Тем не менее математические объек­ты являются общими культурными идеями, подобно литературным персонажам или религиозным концепциям (45).

Следует сказать несколько больше относительно того, что же представляет собой так называемая гуманистическая математика. В целом ее можно отнести к новому модному направлению в фило­софии — социальному конструированию, хотя гуманистическая математика является менее радикальным взглядом по сравнению с социальным конструированием (46). Дело в том, что признание мате­матики просто человеческой активностью, с точки зрения гуманис­тической математики, вообще не имеет отношения к философии математики. Последняя усматривает скрытый смысл за пределами социально-историко-культурного контекста, который проявляется в неизменной онтологии математических объектов и вневременном характере математических истин. Но если, как это утверждает гума­нистическая математика, математическое познание погрешимо, тогда истина и онтология в математике изменяются по ходу познания.

Конфликт между гуманистической математикой и классической философией математики достаточно глубок, поскольку отражает не только недовольство стагнацией в философии математики, но и по­пытки радикального отделения философии от математики вообще. Р. Херш говорит, что зачастую нет смысла философствовать по по­воду математики, ища в ней скрытый смысл. Все, что есть в матема­тике, — это деятельность работающих математиков, и поиски философов по поводу того, что такое математика, не имеют отноше­ния к деятельности математиков. Философия тут берет ложный след.

Итак, в философии математики создалась следующая ситуация. С одной стороны, хотя есть признание стагнации в классической философии математики и даже признание того, что «ничего из этого не работает», существует ряд направлений, призванных придать философии математики новое дыхание. С другой стороны, есть пол­ное отрицание значимости классической философии математики, обоснованное убеждением, что философская оценка математичес­кой деятельности бесплодна: математическая деятельность не име­ет в себе скрытого смысла, искомого философией, и сама филосо­фия неправильно следует в своих собственных стандартах строгос­ти, на которых основывается философия математики, за этой самой математикой. Ясно, что с классической философией математики что-то не так, но в поисках нового дыхания этой фундаментальной об­ласти философии требуется ответить на упреки гуманистической математики. Таким ответом является эпистемологический поворот в исследованиях по основаниям математики и в целом в философии математики.

Теперь рассмотрим радикальный тезис о том, что философия не имеет отношения к математике. С этой точки зрения математика живет своей собственной жизнью независимо от каких-либо фило­софских рассмотрений. Взгляды относительно статуса математичес­ких объектов или утверждений ничего не вносят в математику и яв­ляются худшей софистикой, бормотаньем и вмешательством посто­ронних. Надо признать, что большинство математиков вообще не интересуются философией, онтологией или семантикой. Ну а те математики, которые исповедуют философию, часто входят в про­тиворечие со своей собственной практикой.

В этом отношении близким взглядом является натурализм, ха­рактеризуемый Куайном как «отказ от первой философии» и «осоз­нание того, что только в рамках самой науки должна описываться и идентифицироваться реальность». Мэдди применяет натурализм к математике, также утверждая, что математика должна быть изоли­рована от традиционных философских исследований. Ну и все про­блемы в математике должны решаться математиками как математи­ками. Как быть с такой радикальной точкой зрения?

Известно, что многие знаменитые математики были философа­ми. Так, Гедель утверждал, что его реализм был важным фактором открытия полноты первопорядковой логики и неполноты арифме­тики. Например, теорема полноты есть следствие некоторых результатов Сколема. Но Сколем не сделал этого шага. Почему? Потому что оба имели различные ориентации в онтологии. Но это лишь не­многие счастливые примеры среди моря примеров отрицательного отношения математиков к философии.

Р. Херш продолжает атаковать философию математики еще бо­лее яростно, настаивая на том, что даже подразумеваемая филосо­фия работающего математика, а именно платонизм, ущербна в са­мой основе. Характерным подтверждением такой позиции является следующее его высказывание: «Проблема состоит в том, что Плато­низм оставил Бога, но продолжает считать Математику мыслями Бога». Херш полагает, что «традиционная философия осознает толь­ко передовой фронт математики». Но нельзя понять передовой фронт без того, чтобы понять ее фон. Внутренний участник событий мог бы: 1) помочь лучшему пониманию мешанины в математике и сфор­мулировать проблемы под правильным углом зрения с учетом кон­текста, с новой возможностью решить их; 2) показать, что нет нуж­ды философствовать по поводу математики, ища скрытый смысл в ней; 3) дать философский ответ на то, что есть математика. Одна­ко пролегомены (1) не должны быть терапевтическими по отноше­нию к (2) и не должны делать позитивного вклада в (3). Херш сам предпочитает заниматься в основном (3). Внутренний участник мо­жет дать ответ на (1), но вряд ли на (2) и (3). Большая часть внутрен­них участников являются повседневными платонистами, а по вы­ходным — формалистами, что вносит философскую путаницу (47).

Большинство внутренних участников (от Декарта до Гильбер­та) были осведомлены о «задворках» математики, но их, в отличие от Херша, интересовал вопрос не о том, что такое математика, а о том, как мы объясняем объективность математических вер и надеж­ность математического размышления. Социальный характер мате­матики является тривиальным обстоятельством, свойственным все­му человеческому знанию.

В подобного рода рассмотрениях важное место занимает пози­ция работающего математика, или, более фундаментально, матема­тическая практика. Любое обсуждение философии науки требует обращения к научной практике. Но для философских целей понятие практики часто принимает нужную форму в угоду философским предпочтениям. Поэтому желательно заранее сформулировать, что представляет собой научная практика, или, более точно, какова структура научной практики, которая является предметом философского анализа. В случае математики суть практики отнюдь не сводится к доказательству, хотя традиционно считалось, что математик дока­зывает истины. Само понятие доказательства представляет собой цепь аргументов, значимость которых варьировалась в зависимости от той же самой математической практики. Научная практика имеет много компонентов: язык, теоретические принципы, примеры тео­ретической и экспериментальной работы, принятые методы размыш­ления, техника разрешения проблем, оценка важности вопросов, метанаучные взгляды на природу научного поиска. Ф. Китчер рас­сматривает математическую практику как предприятие, включаю­щее в себя пять компонентов: язык, множество принятых предложе­ний, множество принятых способов рассуждения, множество при­нятых в качестве важных вопросов и множество метаматематичес­ких взглядов (стандарты доказательства и определения, а также утверждения о сфере и структуре математики) (48).

Таким образом, традиционные взгляды на философию матема­тики претерпевают значительное изменение. Среди хаоса мнений и предположений о том, в какой степени математика связана с фило­софией, следует найти какой-то порядок, который смог бы дать точ­ку опоры в будущей философии математики, если ей суждено вы­жить. На мой взгляд, таковой является эпистемологическая ориен­тация на вопросы математического познания, а не на традиционные вопросы о природе математических объектов и математической истины.

Литература

К Введению

' Rota G.-C. The Pernicious Influence of Mathematics upon Philosophy/I SyntheseSS: 165—178,1991 —P. 167.

2 Ibid. — P. 168—169

3 Putnam H. Review of the Concept of a Person II Philosophical Papers. Mind, Language and Reality. — Cambridge: University Press, 1975. — Vol. 2. — P. 132—133.

4 Martin R. Intension and Decision. — N.Y., 1964. — P. 42.

5 См., например: Lavine Sh. Understanding the Infinite. — Cambridge: Harvard University Press, 1994.

6 Godel K. What is Cantor's Continuum Problem? II Philosophy of Mathematics / Ed. P. Benacerraf, H. Putnam. — Englewood Cliffs: Prentice-Hall, 1964. — P. 262.

7 Maddy P. Realism in Mathematics. — Oxford: University Press, 1990.

8 Maddy P. Naturalism in Mathematics. — Oxford: University Press, 1997.

9 Rota G.-C. Mathematics and Philosophy: Story of Misunderstanding II Review of Metaphysics. — 1990. — Vol. 44, N 174, Dec.

10 Rota О -С Mathematics and Philosophy. — P. 260.

К главе 1

1 Клайн М. Математика: утрата определенности. — М.: Мир, 1984.

2 См., например: Korner S. The Philosophy of Mathematics. — L.: Hutchinson,

3 Mostowski A. Thirty Years of Foundational Studies // Acta Philosophica Fennica, t' Fasc. 17. — Helsinki, 1965. — P. 8.

4 Хао Ван. Процесс и существование II Математическая логика и ее примене- { ние. — М., 1965.

5 Hersh R. A Fresh Winds in the Philosophy of Mathematics II Amer. Math. Monthly. — 1995. — Aug.-Sept. — P. 590—591.

6 Hintikka Ja. Lingua Universalis vs Calculus Ratiocinator. — Dordrecht: Kluwer Academic Publishers, 1997. — P. 2.

7 Hintikka Ja. Principles of Mathematics Revisited. — Cambridge: University Press, 1996.

8 Hintikka Ja. Principles of Mathematics Revisited.

9 Maddy P. Philosophy of Mathematics: Prospects for the 1990s II Synthese 88. — 1991.— P. 155—164.

10 www.math.psu.edu/simpson/fom/posting/006/msg00142.html

11 Passmore J. Recent Philosophers. — N.Y.: Open Court, 1991.

12 Benacerraf P. What Numbers Could Not Be II Philos. Rev. — 1965. — Vol. 74, № 1.

13 Shapiro S. Philosophy of Mathematics. Structure and Ontology. — Oxford: University Press, 1997.

14 Resnik M. Mathematics as a Science of Patterns. — Oxford: Clarendon Press, 1997. 20

15 Beth Е. Mathematical Thought. — Dordrecht: Reidel, 1965. — P. 176.

16 Curry H. Outlines of a Formalist Philosophy of Mathematics. — Amsterdam, 1970.— P. 30—31.

17 Benacerraf P. What Numbers Could Not Be. — P. 23.

18 Ibid.

19 Field H. Science without Numbers. — Princeton: University Press, 1980.

20 Takeuti G. Two Applications of Logic to Mathematics. — Princeton: University Press, 1977.

21 Tappenden J. Recent Works in Philosophy of Mathematics II J. Philosophy. — 2001. — Vol. 97. — P. 488—497.

22 Chihara Ch. Constructibility and Mathematical Existence. —Oxford: University Press, 1990.

23 Davis Ph., Hersh R. The Mathematical Experience. —Penguin, 1983. —P. 321.

24 Penrose R. The Emperors New Mind. — L : Vintage, 1990. — P. 147.

25 Рассел Б. Мудрость Запада. — М.: Республика, 1998. — С. 5р—51.

26 Рассел Б. История западной философии. — Новосибирск: Изд-во НГУ, 1997.— С. 51.

28 Barrow J. Pi in the Sky. — P. 273.

29 Ibid. — P. 259.

" 1U1U.---- Г. £.J7.

30 См.: Philosophy of Mathematics I Ed. P. Benacerraf, H. Putnam. — Engiewood Cliffs: Prentice-Hall, 1964.

31 Рассел Б. Введение в математическую философию. —М.: Гнозис, 1996. — С. 155—156.

32 Moschovakis Y. Descriptive Set Theory. — Amsterdam: North Holland, 1980. — P. 605.

33 Quine W.V.O. Epistemology Naturalized II Ontological Relativity and Other Essays. — Harvard: University Press, 1969.

34 Maddy P. Mathematical Realism //Midwest Studies in Philosophy. — 1988. — Vol. 12. — P. 275.

35 Benacerraf P. Mathematical Truth II J. Philosophy. — 1973. — P. 403—419.

36 Из рецензии на кн.: Mathematical Knowledge by M. Steiner, Ithaka. — Cornell: University Press, 1975. — 164 p. — Rec. W.D. Hart //J. Philosophy. —1977. —Vol. 74, N2, febr. — P. 118—129.

37 BalaguerM. Platonism and Antiplatonism in Mathematics. —Oxford: University Press, 1998.

38 См.: Целищев В.В., Бессонов А.В. Две интерпретации логических сис­тем. — Новосибирск: Наука, 1979.

39 По поводу причинной теории познания см.: Goldman A.I. A Causal Theory of Knowledge II Essays on Knowledge and Justification / Ed. G. Pappas, M. Swain. — Cornell: University Press, 1978.

40 Сводка результатов этого крайне объемного материала может быть найде­на в кн.: Colyvan M. The Indispensability of Mathematics. — Oxford: University Press, 2001.

41 Godel К. What Is Cantor 's Continuum Problem? II Philosophy of Mathematics / Ed. H. Putnam, P. Benacenaf. — Cambridge: University Press, 1964. — P. 271—272.

42 Rucker R. Infinity and the Mind. — Bantam Books, 1983. — P. 183.

43 Shapiro S. Mathematics and Philosophy of Mathematics /I Philosophia Mathematica. — 1994. — Vol. 2, N 3. — P. 148—160.

44 Kitcher Ph. The Nature of Mathematical Knowledge.— Oxford: University Press, 1983.

45 Rec. Philosophy of Science. — 1966. — N 3. — P. 501—502: Hersh R. What is Mathematics, Really?- Oxford: University Press, 1997.

46 По поводу социального конструирования см.: Hacking I. The Social Construction of What? — Harvard: University Press, 1999.

47 Hersh R. Mathematics has a Front and a Back II Synthese P- 127-133.

Вопросы для понимания

  1. Назовите философские программы в области оснований математики и логики, начатые в конце XIX - начале XXв. Дайте их характеристику (М. Клайн. Утрата определенности. М., 1984, гл. X, XI).

  2. Какие мнения А. Мостовского и Хао Вана приводит автор статьи о причинах возникновения программ? Можно ли дать другое объяснение обращения математиков к философии?

  3. Какую параллель проводит Р. Херш между развитием философии науки и философии математики?

  4. Какие новые открытия принесли математике исследования по основаниям математики? Что такое алгебраизация логики? Приведите еще факты, когда побочные продукты исследования оказались более важными, чем исходные цели?

  5. Согласны ли вы с тем, что стандарты аргументации в философии часто диктуются не столько разумом, сколько эмоциями?

  6. Можно ли считать неудачей (кризисом) развитие исследований по философии математики на том основании, что оно закончилось их превращением из философских в сугубо математические?

разделу 2

  1. Назовите 8 направлений в философии математики, которые приводит Х. Патнэм. Почему Патнэм считает, что от первых четырех следует отказаться?

  2. Только ли для современной аналитической философии и философии математики характерно многообразие направлений? Объясняется ли это тем, что в этих сферах работает много философов? Или возможно какое-то другое, более принципиальное объяснение?